8 research outputs found

    Automatic Search of Bit-Based Division Property for ARX Ciphers and Word-Based Division Property

    Get PDF
    Division property is a generalized integral property proposed by Todo at Eurocrypt 2015. Previous tools for automatic searching are mainly based on the Mixed Integer Linear Programming (MILP) method and trace the division property propagation at the bit level. In this paper, we propose automatic tools to detect ARX ciphers\u27 division property at the bit level and some specific ciphers\u27 division property at the word level. For ARX ciphers, we construct the automatic searching tool relying on Boolean Satisfiability Problem (SAT) instead of MILP, since SAT method is more suitable in the search of ARX ciphers\u27 differential/linear characteristics. The propagation of division property is translated into a system of logical equations in Conjunctive Normal Form (CNF). Some logical equations can be dynamically adjusted according to different initial division properties and stopping rule, while the others corresponding to r-round propagations remain the same. Moreover, our approach can efficiently identify some optimized distinguishers with lower data complexity. As a result, we obtain a 17-round distinguisher for SHACAL-2, which gains four more rounds than previous work, and an 8-round distinguisher for LEA, which covers one more round than the former one. For word-based division property, we develop the automatic search based on Satisfiability Modulo Theories (SMT), which is a generalization of SAT. We model division property propagations of basic operations and S-boxes by logical formulas, and turn the searching problem into an SMT problem. With some available solvers, we achieve some new distinguishers. For CLEFIA, 10-round distinguishers are obtained, which cover one more round than the previous work. For the internal block cipher of Whirlpool, the data complexities of 4/5-round distinguishers are improved. For Rijndael-192 and Rijndael-256, 6-round distinguishers are presented, which attain two more rounds than the published ones. Besides, the integral attacks for CLEFIA are improved by one round with the newly obtained distinguishers

    CODEX: a robust and secure secret distribution system

    Full text link

    Enhancing Privacy Protection:Set Membership, Range Proofs, and the Extended Access Control

    Get PDF
    Privacy has recently gained an importance beyond the field of cryptography. In that regard, the main goal behind this thesis is to enhance privacy protection. All of the necessary mathematical and cryptographic preliminaries are introduced at the start of this thesis. We then show in Part I how to improve set membership and range proofs, which are cryptographic primitives enabling better privacy protection. Part II shows how to improve the standards for Machine Readable Travel Documents (MRTDs), such as biometric passports. Regarding set membership proofs, we provide an efficient protocol based on the Boneh-Boyen signature scheme. We show that alternative signature schemes can be used and we provide a general protocol description that can be applied for any secure signature scheme. We also show that signature schemes in our design can be replaced by cryptographic accumulators. For range proofs, we provide interactive solutions where the range is divided in a base u and the u-ary digits are handled by one of our set membership proofs. A general construction is also provided for any set membership proof. We additionally explain how to handle arbitrary ranges with either two range proofs or with an improved solution based on sumset representation. These efficient solutions achieve, to date, the lowest asymptotical communication load. Furthermore, this thesis shows that the first efficient non-interactive range proof is insecure. This thesis thus provides the first efficient and secure non-interactive range proof. In the case of MRTDs, two standards exist: one produced by the International Civil Aviation Organization (ICAO) and the other by the European Union, which is called the Extended Access Control (EAC). Although this thesis focuses on the EAC, which is supposed to solve all privacy concerns, it shows that both standards fail to provide complete privacy protection. Lastly, we provide several solutions to improve them

    Formally Verified Verifiable Electronic Voting Scheme

    Get PDF
    Since the introduction of secret ballots in Victoria, Australia in 1855, paper (ballots) are widely used around the world to record the preferences of eligible voters. Paper ballots provide three important ingredients: correctness, privacy, and verifiability. However, the paper ballot election brings various other challenges, e.g. it is slow for large democracies like India, error prone for complex voting method like single transferable vote, and poses operational challenges for large countries like Australia. In order to solve these problems and various others, many countries are adopting electronic voting. However, electronic voting has a whole new set of problems. In most cases, the software programs used to conduct the election have numerous problems, including, but not limited to, counting bugs, ballot identification, etc. Moreover, these software programs are treated as commercial in confidence and are not allowed to be inspected by members of the public. As a consequence, the result produced by these software programs can not be substantiated. In this thesis, we address the three main concerns posed by electronic voting, i.e. correctness, privacy, and verifiability. We address the correctness concern by using theorem prover to implement the vote counting algorithm, privacy concern by using cryptography, and verifiability concern by generating a independently checkable scrutiny sheet (certificate). Our work has been carried out in the Coq theorem prover

    Automating interpretations of trustworthiness

    Get PDF

    Lightweight cryptography on ultra-constrained RFID devices

    Full text link
    Devices of extremely small computational power like RFID tags are used in practice to a rapidly growing extent, a trend commonly referred to as ubiquitous computing. Despite their severely constrained resources, the security burden which these devices have to carry is often enormous, as their fields of application range from everyday access control to human-implantable chips providing sensitive medical information about a person. Unfortunately, established cryptographic primitives such as AES are way to 'heavy' (e.g., in terms of circuit size or power consumption) to be used in corresponding RFID systems, calling for new solutions and thus initiating the research area of lightweight cryptography. In this thesis, we focus on the currently most restricted form of such devices and will refer to them as ultra-constrained RFIDs. To fill this notion with life and in order to create a profound basis for our subsequent cryptographic development, we start this work by providing a comprehensive summary of conditions that should be met by lightweight cryptographic schemes targeting ultra-constrained RFID devices. Building on these insights, we then turn towards the two main topics of this thesis: lightweight authentication and lightweight stream ciphers. To this end, we first provide a general introduction to the broad field of authentication and study existing (allegedly) lightweight approaches. Drawing on this, with the (n,k,L)^-protocol, we suggest our own lightweight authentication scheme and, on the basis of corresponding hardware implementations for FPGAs and ASICs, demonstrate its suitability for ultra-constrained RFIDs. Subsequently, we leave the path of searching for dedicated authentication protocols and turn towards stream cipher design, where we first revisit some prominent classical examples and, in particular, analyze their state initialization algorithms. Following this, we investigate the rather young area of small-state stream ciphers, which try to overcome the limit imposed by time-memory-data tradeoff (TMD-TO) attacks on the security of classical stream ciphers. Here, we present some new attacks, but also corresponding design ideas how to counter these. Paving the way for our own small-state stream cipher, we then propose and analyze the LIZARD-construction, which combines the explicit use of packet mode with a new type of state initialization algorithm. For corresponding keystream generator-based designs of inner state length n, we prove a tight (2n/3)-bound on the security against TMD-TO key recovery attacks. Building on these theoretical results, we finally present LIZARD, our new lightweight stream cipher for ultra-constrained RFIDs. Its hardware efficiency and security result from combining a Grain-like design with the LIZARD-construction. Most notably, besides lower area requirements, the estimated power consumption of LIZARD is also about 16 percent below that of Grain v1, making it particularly suitable for passive RFID tags, which obtain their energy exclusively through an electromagnetic field radiated by the reading device. The thesis is concluded by an extensive 'Future Research Directions' chapter, introducing various new ideas and thus showing that the search for lightweight cryptographic solutions is far from being completed

    Actas de la XIII Reunión Española sobre Criptología y Seguridad de la Información RECSI XIII : Alicante, 2-5 de septiembre de 2014

    Get PDF
    Si tuviéramos que elegir un conjunto de palabras clave para definir la sociedad actual, sin duda el término información sería uno de los más representativos. Vivimos en un mundo caracterizado por un continuo flujo de información en el que las Tecnologías de la Información y Comunicación (TIC) y las Redes Sociales desempeñan un papel relevante. En la Sociedad de la Información se generan gran variedad de datos en formato digital, siendo la protección de los mismos frente a accesos y usos no autorizados el objetivo principal de lo que conocemos como Seguridad de la Información. Si bien la Criptología es una herramienta tecnológica básica, dedicada al desarrollo y análisis de sistemas y protocolos que garanticen la seguridad de los datos, el espectro de tecnologías que intervienen en la protección de la información es amplio y abarca diferentes disciplinas. Una de las características de esta ciencia es su rápida y constante evolución, motivada en parte por los continuos avances que se producen en el terreno de la computación, especialmente en las últimas décadas. Sistemas, protocolos y herramientas en general considerados seguros en la actualidad dejarán de serlo en un futuro más o menos cercano, lo que hace imprescindible el desarrollo de nuevas herramientas que garanticen, de forma eficiente, los necesarios niveles de seguridad. La Reunión Española sobre Criptología y Seguridad de la Información (RECSI) es el congreso científico español de referencia en el ámbito de la Criptología y la Seguridad en las TIC, en el que se dan cita periódicamente los principales investigadores españoles y de otras nacionalidades en esta disciplina, con el fin de compartir los resultados más recientes de su investigación. Del 2 al 5 de septiembre de 2014 se celebrará la decimotercera edición en la ciudad de Alicante, organizada por el grupo de Criptología y Seguridad Computacional de la Universidad de Alicante. Las anteriores ediciones tuvieron lugar en Palma de Mallorca (1991), Madrid (1992), Barcelona (1994), Valladolid (1996), Torremolinos (1998), Santa Cruz de Tenerife (2000), Oviedo (2002), Leganés (2004), Barcelona (2006), Salamanca (2008), Tarragona (2010) y San Sebastián (2012)
    corecore