85 research outputs found

    Identity Based Threshold Ring Signature

    Get PDF
    In threshold ring signature schemes, any group of tt entities spontaneously conscripting arbitrarily n−tn-t entities to generate a publicly verifiable tt-out-of-nn signature on behalf of the whole group, yet the actual signers remain anonymous. The spontaneity of these schemes is desirable for ad-hoc groups such as mobile ad-hoc networks. In this paper, we present an identity based (ID-based) threshold ring signature scheme. The scheme is provably secure in the random oracle model and provides trusted authority compatibility. To the best of authors\u27 knowledge, our scheme is the first ID-based threshold ring signature scheme which is also the most efficient (in terms of number of pairing operations required) ID-based ring signature scheme (when t=1t = 1) and threshold ring signature scheme from pairings

    Efficient oblivious transfer with membership verification

    Get PDF
    tru

    Security Analysis of Some Proxy Signature

    Get PDF
    A proxy signature scheme allows an entity to delegate his/her signing capability to another entity in such a way that the latter can sign messages on behalf of the former. Such schemes have been suggested for use in a number of applications, particularly in distributed computing where delegation of rights is quite common. Followed by the rst schemes introduced by Mambo, Usuda and Okamoto in 1996, a number of new schemes and improvements have been proposed. In this paper, we present a security analysis of four such schemes newly proposed in [15, 16]. By successfully identifying several interesting forgery attacks, we show that all the four schemes are insecure. Consequently, the fully distributed proxy scheme in [11] is also insecure since it is based on the (insecure) LKK scheme [14, 15]. In addition, we point out the reasons why the security proofs provided in [15] are invalid

    A Bit-Vector Differential Model for the Modular Addition by a Constant

    Get PDF
    ARX algorithms are a class of symmetric-key algorithms constructed by Addition, Rotation, and XOR, which achieve the best software performances in low-end microcontrollers. To evaluate the resistance of an ARX cipher against differential cryptanalysis and its variants, the recent automated methods employ constraint satisfaction solvers, such as SMT solvers, to search for optimal characteristics. The main difficulty to formulate this search as a constraint satisfaction problem is obtaining the differential models of the non-linear operations, that is, the constraints describing the differential probability of each non-linear operation of the cipher. While an efficient bit-vector differential model was obtained for the modular addition with two variable inputs, no differential model for the modular addition by a constant has been proposed so far, preventing ARX ciphers including this operation from being evaluated with automated methods. In this paper, we present the first bit-vector differential model for the n-bit modular addition by a constant input. Our model contains O(log2(n)) basic bit-vector constraints and describes the binary logarithm of the differential probability. We also represent an SMT-based automated method to look for differential characteristics of ARX, including constant additions, and we provide an open-source tool ArxPy to find ARX differential characteristics in a fully automated way. To provide some examples, we have searched for related-key differential characteristics of TEA, XTEA, HIGHT, and LEA, obtaining better results than previous works. Our differential model and our automated tool allow cipher designers to select the best constant inputs for modular additions and cryptanalysts to evaluate the resistance of ARX ciphers against differential attacks.acceptedVersio

    Changing of the Guards: a simple and efficient method for achieving uniformity in threshold sharing

    Get PDF
    Since they were first proposed as a countermeasure against differential power analysis (DPA) in 2006, threshold schemes have attracted a lot of attention from the community concentrating on cryptographic implementations. What makes threshold schemes so attractive from an academic point of view is that they come with an information-theoretic proof of resistance against a specific subset of side-channel attacks: first-order DPA. From an industrial point of view they are attractive as a careful threshold implementation forces adversaries to DPA of higher order, with all its problems such a noise amplification. A threshold scheme that offers the mentioned provable security must exhibit three properties: correctness, incompleteness and uniformity. A threshold scheme becomes more expensive with the number of shares that must be implemented and the required number of shares is lower bound by the algebraic degree of the function being shared plus 1. Defining a correct and incomplete sharing of a function of degree d in d+1 shares is straightforward. However, up to now there is no generic method to achieve uniformity and finding uniform sharings of degree-d functions with d+1 shares is an active research area. In this paper we present a simple and relatively cheap method to find a correct, incomplete and uniform d+1-share threshold scheme for any S-box layer consisting of degree-d invertible S-boxes. The uniformity is not implemented in the sharings of the individual S-boxes but rather at the S-box layer level by the use of feed-forward and some expansion of shares. When applied to the Keccak-p nonlinear step Chi, its cost is very small

    A Bit-Vector Differential Model for the Modular Addition by a Constant

    Get PDF
    ARX algorithms are a class of symmetric-key algorithms constructed by Addition, Rotation, and XOR, which achieve the best software performances in low-end microcontrollers. To evaluate the resistance of an ARX cipher against differential cryptanalysis and its variants, the recent automated methods employ constraint satisfaction solvers, such as SMT solvers, to search for optimal characteristics. The main difficulty to formulate this search as a constraint satisfaction problem is obtaining the differential models of the non-linear operations, that is, the constraints describing the differential probability of each non-linear operation of the cipher. While an efficient bit-vector differential model was obtained for the modular addition with two variable inputs, no differential model for the modular addition by a constant has been proposed so far, preventing ARX ciphers including this operation from being evaluated with automated methods. In this paper, we present the first bit-vector differential model for the n-bit modular addition by a constant input. Our model contains O(log_2(n)) basic bit-vector constraints and describes the binary logarithm of the differential probability. We also represent an SMT-based automated method to look for differential characteristics of ARX, including constant additions, and we provide an open-source tool ArxPy to find ARX differential characteristics in a fully automated way. To provide some examples, we have searched for related-key differential characteristics of TEA, XTEA, HIGHT, and LEA, obtaining better results than previous works. Our differential model and our automated tool allow cipher designers to select the best constant inputs for modular additions and cryptanalysts to evaluate the resistance of ARX ciphers against differential attacks

    Feistel Like Construction of Involutory Binary Matrices With High Branch Number

    Get PDF
    In this paper, we propose a generic method to construct involutory binary matrices from a three round Feistel scheme with a linear round function. We prove bounds on the maximum achievable branch number (BN) and the number of fixed points of our construction. We also define two families of efficiently implementable round functions to be used in our method. The usage of these families in the proposed method produces matrices achieving the proven bounds on branch numbers and fixed points. Moreover, we show that BN of the transpose matrix is the same with the original matrix for the function families we defined. Some of the generated matrices are \emph{Maximum Distance Binary Linear} (MDBL), i.e. matrices with the highest achievable BN. The number of fixed points of the generated matrices are close to the expected value for a random involution. Generated matrices are especially suitable for utilising in bitslice block ciphers and hash functions. They can be implemented efficiently in many platforms, from low cost CPUs to dedicated hardware

    Fully Invisible Protean Signatures Schemes

    Get PDF
    Protean Signatures (PS), recently introduced by Krenn et al. (CANS \u2718), allow a semi-trusted third party, named the sanitizer, to modify a signed message in a controlled way. The sanitizer can edit signer-chosen parts to arbitrary bitstrings, while the sanitizer can also redact admissible parts, which are also chosen by the signer. Thus, PSs generalize both redactable signature (RSS) and sanitizable signature (SSS) into a single notion. However, the current definition of invisibility does not prohibit that an outsider can decide which parts of a message are redactable - only which parts can be edited are hidden. This negatively impacts on the privacy guarantees provided by the state-of-the-art definition. We extend PSs to be fully invisible. This strengthened notion guarantees that an outsider can neither decide which parts of a message can be edited nor which parts can be redacted. To achieve our goal, we introduce the new notions of Invisible RSSs and Invisible Non-Accountable SSSs (SSS\u27), along with a consolidated framework for aggregate signatures. Using those building blocks, our resulting construction is significantly more efficient than the original scheme by Krenn et al., which we demonstrate in a prototypical implementation

    A Statistical Verification Method of Random Permutations for Hiding Countermeasure Against Side-Channel Attacks

    Full text link
    As NIST is putting the final touches on the standardization of PQC (Post Quantum Cryptography) public key algorithms, it is a racing certainty that peskier cryptographic attacks undeterred by those new PQC algorithms will surface. Such a trend in turn will prompt more follow-up studies of attacks and countermeasures. As things stand, from the attackers' perspective, one viable form of attack that can be implemented thereupon is the so-called "side-channel attack". Two best-known countermeasures heralded to be durable against side-channel attacks are: "masking" and "hiding". In that dichotomous picture, of particular note are successful single-trace attacks on some of the NIST's PQC then-candidates, which worked to the detriment of the former: "masking". In this paper, we cast an eye over the latter: "hiding". Hiding proves to be durable against both side-channel attacks and another equally robust type of attacks called "fault injection attacks", and hence is deemed an auspicious countermeasure to be implemented. Mathematically, the hiding method is fundamentally based on random permutations. There has been a cornucopia of studies on generating random permutations. However, those are not tied to implementation of the hiding method. In this paper, we propose a reliable and efficient verification of permutation implementation, through employing Fisher-Yates' shuffling method. We introduce the concept of an n-th order permutation and explain how it can be used to verify that our implementation is more efficient than its previous-gen counterparts for hiding countermeasures.Comment: 29 pages, 6 figure

    A Generic Construction for Verifiable Attribute-based Keyword Search Schemes

    Get PDF
    Cloud data owners encrypt their documents before outsourcing to provide their privacy. They could determine a search control policy and delegate the ability of search token generation to the users whose attributes satisfy the search control policy. Verifiable attribute-based keyword search (VABKS) where the users can also verify the accuracy of cloud functionality is one of such schemes. In this paper, the first generic construction for VABKS is proposed. To this end, the notion of hierarchical identity-based multi-designated verifier signature (HIB-MDVS) has been introduced and existential forgery under chosen message attack (EF-CMA) is formally defined for its unforgeability. Furthermore, anonymity against chosen identity vector set and chosen plaintext attack (Anon-CIVS-CPA) has been defined as the security definition of hierarchical identity-based broadcast encryption (HIBBE) in a formal way. The proposed construction is built in a modular structure by using HIBBE, HIB-MDVS, and Bloom filter as the building blocks. We prove that the security of proposed construction is based on the unforgeability of HIB-MDVS and the anonymity of HIBBE. Finally, the concept of verifiable ranked keyword search will be introduced and a construction of this primitive will be presented which is based on proposed VABKS
    • …
    corecore