2,231 research outputs found

    Context-Awareness Enhances 5G Multi-Access Edge Computing Reliability

    Get PDF
    The fifth generation (5G) mobile telecommunication network is expected to support Multi- Access Edge Computing (MEC), which intends to distribute computation tasks and services from the central cloud to the edge clouds. Towards ultra-responsive, ultra-reliable and ultra-low-latency MEC services, the current mobile network security architecture should enable a more decentralized approach for authentication and authorization processes. This paper proposes a novel decentralized authentication architecture that supports flexible and low-cost local authentication with the awareness of context information of network elements such as user equipment and virtual network functions. Based on a Markov model for backhaul link quality, as well as a random walk mobility model with mixed mobility classes and traffic scenarios, numerical simulations have demonstrated that the proposed approach is able to achieve a flexible balance between the network operating cost and the MEC reliability.Comment: Accepted by IEEE Access on Feb. 02, 201

    The Design of Convoluted Kernel Architectural Framework for Trusted Systems – CKA

    Get PDF
    This paper presents the overview of the Convoluted Kernel Architectural framework and a comparative study with the traditional Linux kernel. The architecture is specially designed for trusted sever environment. It has an integrated layer of a customized Unified Threat Management (UTM) and Stealth-Obfuscation OK Authentication algorithm, which is a highly improved and novel zero knowledge authentication algorithm, for secure web gateway to the kernel mode. The framework used is a combined monolithic and microkernel based (hybrid) architecture code-named – the integrated approach, to trade in the benefits of both designs. The architecture serves as the base framework for the Trust Resilient Enhanced Network Defense Operating System (TREND-OS) currently being experimented in the lab. The aim is to develop an architecture that can protect the kernel against itself and applications

    Energy efficient task scheduling in data center

    Get PDF
    First of all, I am thankful to God for his blessings and showing me the right direction. With His mercy, it has been made possible for me to reach so far. Foremost, I would like to express my sincere gratitude to my advisor Prof. Durga Prasad Mohapatra for the continuous support of my M.Tech study and research, for his patience, motivation, enthusiasm, and immense knowledge. I am thankful for her continual support, encouragement, and invaluable suggestion. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my M.Tech study. Besides my advisor, I extend my thanks to our HOD, Prof. S. K. Rath and Prof. B. D. Sahoo for their valuable advices and encouragement. I express my gratitude to all the sta members of Computer Science and Engineering Department for providing me all the facilities required for the completion of my thesis work. I would like to say thanks to all my friends especially Dilip Kumar, Alok Pandey for their support. Last but not the least I am highly grateful to all my family members for their inspiration and ever encouraging moral support, which enables me to purse my studies
    corecore