421 research outputs found

    Automatic categorization of diverse experimental information in the bioscience literature

    Get PDF
    Background: Curation of information from bioscience literature into biological knowledge databases is a crucial way of capturing experimental information in a computable form. During the biocuration process, a critical first step is to identify from all published literature the papers that contain results for a specific data type the curator is interested in annotating. This step normally requires curators to manually examine many papers to ascertain which few contain information of interest and thus, is usually time consuming. We developed an automatic method for identifying papers containing these curation data types among a large pool of published scientific papers based on the machine learning method Support Vector Machine (SVM). This classification system is completely automatic and can be readily applied to diverse experimental data types. It has been in use in production for automatic categorization of 10 different experimental datatypes in the biocuration process at WormBase for the past two years and it is in the process of being adopted in the biocuration process at FlyBase and the Saccharomyces Genome Database (SGD). We anticipate that this method can be readily adopted by various databases in the biocuration community and thereby greatly reducing time spent on an otherwise laborious and demanding task. We also developed a simple, readily automated procedure to utilize training papers of similar data types from different bodies of literature such as C. elegans and D. melanogaster to identify papers with any of these data types for a single database. This approach has great significance because for some data types, especially those of low occurrence, a single corpus often does not have enough training papers to achieve satisfactory performance. Results: We successfully tested the method on ten data types from WormBase, fifteen data types from FlyBase and three data types from Mouse Genomics Informatics (MGI). It is being used in the curation work flow at WormBase for automatic association of newly published papers with ten data types including RNAi, antibody, phenotype, gene regulation, mutant allele sequence, gene expression, gene product interaction, overexpression phenotype, gene interaction, and gene structure correction. Conclusions: Our methods are applicable to a variety of data types with training set containing several hundreds to a few thousand documents. It is completely automatic and, thus can be readily incorporated to different workflow at different literature-based databases. We believe that the work presented here can contribute greatly to the tremendous task of automating the important yet labor-intensive biocuration effort

    Factors affecting the effectiveness of biomedical document indexing and retrieval based on terminologies

    Get PDF
    International audienceThe aim of this work is to evaluate a set of indexing and retrieval strategies based on the integration of several biomedical terminologies on the available TREC Genomics collections for an ad hoc information retrieval (IR) task.Materials and methodsWe propose a multi-terminology based concept extraction approach to selecting best concepts from free text by means of voting techniques. We instantiate this general approach on four terminologies (MeSH, SNOMED, ICD-10 and GO). We particularly focus on the effect of integrating terminologies into a biomedical IR process, and the utility of using voting techniques for combining the extracted concepts from each document in order to provide a list of unique concepts.ResultsExperimental studies conducted on the TREC Genomics collections show that our multi-terminology IR approach based on voting techniques are statistically significant compared to the baseline. For example, tested on the 2005 TREC Genomics collection, our multi-terminology based IR approach provides an improvement rate of +6.98% in terms of MAP (mean average precision) (p < 0.05) compared to the baseline. In addition, our experimental results show that document expansion using preferred terms in combination with query expansion using terms from top ranked expanded documents improve the biomedical IR effectiveness.ConclusionWe have evaluated several voting models for combining concepts issued from multiple terminologies. Through this study, we presented many factors affecting the effectiveness of biomedical IR system including term weighting, query expansion, and document expansion models. The appropriate combination of those factors could be useful to improve the IR performance

    Using Learning to Rank Approach to Promoting Diversity for Biomedical Information Retrieval with Wikipedia

    Get PDF
    In most of the traditional information retrieval (IR) models, the independent relevance assumption is taken, which assumes the relevance of a document is independent of other documents. However, the pitfall of this is the high redundancy and low diversity of retrieval result. This has been seen in many scenarios, especially in biomedical IR, where the information need of one query may refer to different aspects. Promoting diversity in IR takes the relationship between documents into account. Unlike previous studies, we tackle this problem in the learning to rank perspective. The main challenges are how to find salient features for biomedical data and how to integrate dynamic features into the ranking model. To address these challenges, Wikipedia is used to detect topics of documents for generating diversity biased features. A combined model is proposed and studied to learn a diversified ranking result. Experiment results show the proposed method outperforms baseline models

    Search beyond traditional probabilistic information retrieval

    Get PDF
    "This thesis focuses on search beyond probabilistic information retrieval. Three ap- proached are proposed beyond the traditional probabilistic modelling. First, term associ- ation is deeply examined. Term association considers the term dependency using a factor analysis based model, instead of treating each term independently. Latent factors, con- sidered the same as the hidden variables of ""eliteness"" introduced by Robertson et al. to gain understanding of the relation among term occurrences and relevance, are measured by the dependencies and occurrences of term sequences and subsequences. Second, an entity-based ranking approach is proposed in an entity system named ""EntityCube"" which has been released by Microsoft for public use. A summarization page is given to summarize the entity information over multiple documents such that the truly relevant entities can be highly possibly searched from multiple documents through integrating the local relevance contributed by proximity and the global enhancer by topic model. Third, multi-source fusion sets up a meta-search engine to combine the ""knowledge"" from different sources. Meta-features, distilled as high-level categories, are deployed to diversify the baselines. Three modified fusion methods are employed, which are re- ciprocal, CombMNZ and CombSUM with three expanded versions. Through extensive experiments on the standard large-scale TREC Genomics data sets, the TREC HARD data sets and the Microsoft EntityCube Web collections, the proposed extended models beyond probabilistic information retrieval show their effectiveness and superiority.

    Gene Ontology density estimation and discourse analysis for automatic GeneRiF extraction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper describes and evaluates a sentence selection engine that extracts a GeneRiF (Gene Reference into Functions) as defined in ENTREZ-Gene based on a MEDLINE record. Inputs for this task include both a gene and a pointer to a MEDLINE reference. In the suggested approach we merge two independent sentence extraction strategies. The first proposed strategy (LASt) uses argumentative features, inspired by discourse-analysis models. The second extraction scheme (GOEx) uses an automatic text categorizer to estimate the density of Gene Ontology categories in every sentence; thus providing a full ranking of all possible candidate GeneRiFs. A combination of the two approaches is proposed, which also aims at reducing the size of the selected segment by filtering out non-content bearing rhetorical phrases.</p> <p>Results</p> <p>Based on the TREC-2003 Genomics collection for GeneRiF identification, the LASt extraction strategy is already competitive (52.78%). When used in a combined approach, the extraction task clearly shows improvement, achieving a Dice score of over 57% (+10%).</p> <p>Conclusions</p> <p>Argumentative representation levels and conceptual density estimation using Gene Ontology contents appear complementary for functional annotation in proteomics.</p

    DutchHatTrick: semantic query modeling, ConText, section detection, and match score maximization

    Get PDF
    This report discusses the collaborative work of the ErasmusMC, University of Twente, and the University of Amsterdam on the TREC 2011 Medical track. Here, the task is to retrieve patient visits from the University of Pittsburgh NLP Repository for 35 topics. The repository consists of 101,711 patient reports, and a patient visit was recorded in one or more reports
    • 

    corecore