294,565 research outputs found

    Earth observing system. Output data products and input requirements, version 2.0. Volume 3: Algorithm summary tables and non-EOS data products

    Get PDF
    Volume 3 assists Earth Observing System (EOS) investigators in locating required non-EOS data products by identifying their non-EOS input requirements and providing the information on data sets available at various Distributed Active Archive Centers (DAAC's), including those from Pathfinder Activities and Earth Probes. Volume 3 is intended to complement, not to duplicate, the the EOSDIS Science Data Plan (SDP) by providing detailed data set information which was not presented in the SDP. Section 9 of this volume discusses the algorithm summary tables containing information on retrieval algorithms, expected outputs and required input data. Section 10 describes the non-EOS input requirements of instrument teams and IDS investigators. Also described are the current and future data holdings of the original seven DAACS and data products planned from the future missions and projects including Earth Probes and Pathfinder Activities. Section 11 describes source of information used in compiling data set information presented in this volume. A list of data set attributes used to describe various data sets is presented in section 12 along with their descriptions. Finally, Section 13 presents the SPSO's future plan to improve this report

    Cross-Language Plagiarism Detection

    Full text link
    Cross-language plagiarism detection deals with the automatic identification and extraction of plagiarism in a multilingual setting. In this setting, a suspicious document is given, and the task is to retrieve all sections from the document that originate from a large, multilingual document collection. Our contributions in this field are as follows: (1) a comprehensive retrieval process for cross-language plagiarism detection is introduced, highlighting the differences to monolingual plagiarism detection, (2) state-of-the-art solutions for two important subtasks are reviewed, (3) retrieval models for the assessment of cross-language similarity are surveyed, and, (4) the three models CL-CNG, CL-ESA and CL-ASA are compared. Our evaluation is of realistic scale: it relies on 120,000 test documents which are selected from the corpora JRC-Acquis and Wikipedia, so that for each test document highly similar documents are available in all of the six languages English, German, Spanish, French, Dutch, and Polish. The models are employed in a series of ranking tasks, and more than 100 million similarities are computed with each model. The results of our evaluation indicate that CL-CNG, despite its simple approach, is the best choice to rank and compare texts across languages if they are syntactically related. CL-ESA almost matches the performance of CL-CNG, but on arbitrary pairs of languages. CL-ASA works best on "exact" translations but does not generalize well.This work was partially supported by the TEXT-ENTERPRISE 2.0 TIN2009-13391-C04-03 project and the CONACyT-Mexico 192021 grant.Potthast, M.; Barrón Cedeño, LA.; Stein, B.; Rosso, P. (2011). Cross-Language Plagiarism Detection. Language Resources and Evaluation. 45(1):45-62. https://doi.org/10.1007/s10579-009-9114-zS4562451Ballesteros, L. A. (2001). Resolving ambiguity for cross-language information retrieval: A dictionary approach. PhD thesis, University of Massachusetts Amherst, USA, Bruce Croft.Barrón-Cedeño, A., Rosso, P., Pinto, D., & Juan A. (2008). On cross-lingual plagiarism analysis using a statistical model. In S. Benno, S. Efstathios, & K. Moshe (Eds.), ECAI 2008 workshop on uncovering plagiarism, authorship, and social software misuse (PAN 08) (pp. 9–13). Patras, Greece.Baum, L. E. (1972). An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process. Inequalities, 3, 1–8.Berger, A., & Lafferty, J. (1999). Information retrieval as statistical translation. In SIGIR’99: Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval (vol. 4629, pp. 222–229). Berkeley, California, United States: ACM.Brin, S., Davis, J., & Garcia-Molina, H. (1995). Copy detection mechanisms for digital documents. In SIGMOD ’95 (pp. 398–409). New York, NY, USA: ACM Press.Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., & Mercer R. L. (1993). The mathematics of statistical machine translation: Parameter estimation. Computational Linguistics, 19(2), 263–311.Ceska, Z., Toman, M., & Jezek, K. (2008). Multilingual plagiarism detection. In AIMSA’08: Proceedings of the 13th international conference on artificial intelligence (pp. 83–92). Berlin, Heidelberg: Springer.Clough, P. (2003). Old and new challenges in automatic plagiarism detection. National UK Plagiarism Advisory Service, http://www.ir.shef.ac.uk/cloughie/papers/pas_plagiarism.pdf .Dempster A. P., Laird N. M., Rubin D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38.Dumais, S. T., Letsche, T. A., Littman, M. L., & Landauer, T. K. (1997). Automatic cross-language retrieval using latent semantic indexing. In D. Hull & D. Oard (Eds.), AAAI-97 spring symposium series: Cross-language text and speech retrieval (pp. 18–24). Stanford University, American Association for Artificial Intelligence.Gabrilovich, E., & Markovitch, S. (2007). Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In Proceedings of the 20th international joint conference for artificial intelligence, Hyderabad, India.Hoad T. C., & Zobel, J. (2003). Methods for identifying versioned and plagiarised documents. American Society for Information Science and Technology, 54(3), 203–215.Levow, G.-A., Oard, D. W., & Resnik, P. (2005). Dictionary-based techniques for cross-language information retrieval. Information Processing & Management, 41(3), 523–547.Littman, M., Dumais, S. T., & Landauer, T. K. (1998). Automatic cross-language information retrieval using latent semantic indexing. In Cross-language information retrieval, chap. 5 (pp. 51–62). Kluwer.Maurer, H., Kappe, F., & Zaka, B. (2006). Plagiarism—a survey. Journal of Universal Computer Science, 12(8), 1050–1084.McCabe, D. (2005). Research report of the Center for Academic Integrity. http://www.academicintegrity.org .Mcnamee, P., & Mayfield, J. (2004). Character N-gram tokenization for European language text retrieval. Information Retrieval, 7(1–2), 73–97.Meyer zu Eissen, S., & Stein, B. (2006). Intrinsic plagiarism detection. In M. Lalmas, A. MacFarlane, S. M. Rüger, A. Tombros, T. Tsikrika, & A. Yavlinsky (Eds.), Proceedings of the European conference on information retrieval (ECIR 2006), volume 3936 of Lecture Notes in Computer Science (pp. 565–569). Springer.Meyer zu Eissen, S., Stein, B., & Kulig, M. (2007). Plagiarism detection without reference collections. In R. Decker & H. J. Lenz (Eds.), Advances in data analysis (pp. 359–366), Springer.Och, F. J., & Ney, H. (2003). A systematic comparison of various statistical alignment models. Computational Linguistics, 29(1), 19–51.Pinto, D., Juan, A., & Rosso, P. (2007). Using query-relevant documents pairs for cross-lingual information retrieval. In V. Matousek & P. Mautner (Eds.), Lecture Notes in Artificial Intelligence (pp. 630–637). Pilsen, Czech Republic.Pinto, D., Civera, J., Barrón-Cedeño, A., Juan, A., & Rosso, P. (2009). A statistical approach to cross-lingual natural language tasks. Journal of Algorithms, 64(1), 51–60.Potthast, M. (2007). Wikipedia in the pocket-indexing technology for near-duplicate detection and high similarity search. In C. Clarke, N. Fuhr, N. Kando, W. Kraaij, & A. de Vries (Eds.), 30th Annual international ACM SIGIR conference (pp. 909–909). ACM.Potthast, M., Stein, B., & Anderka, M. (2008). A Wikipedia-based multilingual retrieval model. In C. Macdonald, I. Ounis, V. Plachouras, I. Ruthven, & R. W. White (Eds.), 30th European conference on IR research, ECIR 2008, Glasgow , volume 4956 LNCS of Lecture Notes in Computer Science (pp. 522–530). Berlin: Springer.Pouliquen, B., Steinberger, R., & Ignat, C. (2003a). Automatic annotation of multilingual text collections with a conceptual thesaurus. In Proceedings of the workshop ’ontologies and information extraction’ at the Summer School ’The Semantic Web and Language Technology—its potential and practicalities’ (EUROLAN’2003) (pp. 9–28), Bucharest, Romania.Pouliquen, B., Steinberger, R., & Ignat, C. (2003b). Automatic identification of document translations in large multilingual document collections. In Proceedings of the international conference recent advances in natural language processing (RANLP’2003) (pp. 401–408). Borovets, Bulgaria.Stein, B. (2007). Principles of hash-based text retrieval. In C. Clarke, N. Fuhr, N. Kando, W. Kraaij, & A. de Vries (Eds.), 30th Annual international ACM SIGIR conference (pp. 527–534). ACM.Stein, B. (2005). Fuzzy-fingerprints for text-based information retrieval. In K. Tochtermann & H. Maurer (Eds.), Proceedings of the 5th international conference on knowledge management (I-KNOW 05), Graz, Journal of Universal Computer Science. (pp. 572–579). Know-Center.Stein, B., & Anderka, M. (2009). Collection-relative representations: A unifying view to retrieval models. In A. M. Tjoa & R. R. Wagner (Eds.), 20th International conference on database and expert systems applications (DEXA 09) (pp. 383–387). IEEE.Stein, B., & Meyer zu Eissen, S. (2007). Intrinsic plagiarism analysis with meta learning. In B. Stein, M. Koppel, & E. Stamatatos (Eds.), SIGIR workshop on plagiarism analysis, authorship identification, and near-duplicate detection (PAN 07) (pp. 45–50). CEUR-WS.org.Stein, B., & Potthast, M. (2007). Construction of compact retrieval models. In S. Dominich & F. Kiss (Eds.), Studies in theory of information retrieval (pp. 85–93). Foundation for Information Society.Stein, B., Meyer zu Eissen, S., & Potthast, M. (2007). Strategies for retrieving plagiarized documents. In C. Clarke, N. Fuhr, N. Kando, W. Kraaij, & A. de Vries (Eds.), 30th Annual international ACM SIGIR conference (pp. 825–826). ACM.Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufis, D., & Varga, D. (2006). The JRC-Acquis: A multilingual aligned parallel corpus with 20+ languages. In Proceedings of the 5th international conference on language resources and evaluation (LREC’2006).Steinberger, R., Pouliquen, B., & Ignat, C. (2004). Exploiting multilingual nomenclatures and language-independent text features as an interlingua for cross-lingual text analysis applications. In Proceedings of the 4th Slovenian language technology conference. Information Society 2004 (IS’2004).Vinokourov, A., Shawe-Taylor, J., & Cristianini, N. (2003). Inferring a semantic representation of text via cross-language correlation analysis. In S. Becker, S. Thrun, & K. Obermayer (Eds.), NIPS-02: Advances in neural information processing systems (pp. 1473–1480). MIT Press.Yang, Y., Carbonell, J. G., Brown, R. D., & Frederking, R. E. (1998). Translingual information retrieval: Learning from bilingual corpora. Artificial Intelligence, 103(1–2), 323–345

    Affective state influences retrieval-induced forgetting for integrated knowledge

    Get PDF
    Selectively testing parts of learned materials can impair later memory for nontested materials. Research has shown that such retrieval-induced forgetting occurs for low-integrated materials but may be prevented for high-integrated materials. However, previous research has neglected one factor that is ubiquitous in real-life testing: affective stat

    Towards an All-Purpose Content-Based Multimedia Information Retrieval System

    Full text link
    The growth of multimedia collections - in terms of size, heterogeneity, and variety of media types - necessitates systems that are able to conjointly deal with several forms of media, especially when it comes to searching for particular objects. However, existing retrieval systems are organized in silos and treat different media types separately. As a consequence, retrieval across media types is either not supported at all or subject to major limitations. In this paper, we present vitrivr, a content-based multimedia information retrieval stack. As opposed to the keyword search approach implemented by most media management systems, vitrivr makes direct use of the object's content to facilitate different types of similarity search, such as Query-by-Example or Query-by-Sketch, for and, most importantly, across different media types - namely, images, audio, videos, and 3D models. Furthermore, we introduce a new web-based user interface that enables easy-to-use, multimodal retrieval from and browsing in mixed media collections. The effectiveness of vitrivr is shown on the basis of a user study that involves different query and media types. To the best of our knowledge, the full vitrivr stack is unique in that it is the first multimedia retrieval system that seamlessly integrates support for four different types of media. As such, it paves the way towards an all-purpose, content-based multimedia information retrieval system

    Retrieval-induced forgetting as motivated cognition

    Get PDF
    Recalling information from a particular category can reduce one's memory capability for related, non-retrieved information. This is known as the retrieval-induced forgetting effect (RIF; Anderson et al., 1994). The present paper reviews studies that show that the RIF effect is motivated. More specifically, we describe research showing that the need for closure (NFC; the motivation to attain epistemic certainty; Kruglanski and Webster, 1996) generally enhances the RIF, because this prevents uncertainty and confusion from the intrusion of unwanted memories during selective-retrieval. However, when the content of the to-be-forgotten information serves the retriever's goals, NFC reduces RIF. Overall, the present findings are consistent with the view that motivation can affect the magnitude of RIF effects which, in turn, can serve as a mechanism for reaching preferred conclusion

    Overview of VideoCLEF 2009: New perspectives on speech-based multimedia content enrichment

    Get PDF
    VideoCLEF 2009 offered three tasks related to enriching video content for improved multimedia access in a multilingual environment. For each task, video data (Dutch-language television, predominantly documentaries) accompanied by speech recognition transcripts were provided. The Subject Classification Task involved automatic tagging of videos with subject theme labels. The best performance was achieved by approaching subject tagging as an information retrieval task and using both speech recognition transcripts and archival metadata. Alternatively, classifiers were trained using either the training data provided or data collected from Wikipedia or via general Web search. The Affect Task involved detecting narrative peaks, defined as points where viewers perceive heightened dramatic tension. The task was carried out on the “Beeldenstorm” collection containing 45 short-form documentaries on the visual arts. The best runs exploited affective vocabulary and audience directed speech. Other approaches included using topic changes, elevated speaking pitch, increased speaking intensity and radical visual changes. The Linking Task, also called “Finding Related Resources Across Languages,” involved linking video to material on the same subject in a different language. Participants were provided with a list of multimedia anchors (short video segments) in the Dutch-language “Beeldenstorm” collection and were expected to return target pages drawn from English-language Wikipedia. The best performing methods used the transcript of the speech spoken during the multimedia anchor to build a query to search an index of the Dutch language Wikipedia. The Dutch Wikipedia pages returned were used to identify related English pages. Participants also experimented with pseudo-relevance feedback, query translation and methods that targeted proper names

    Natural language processing

    Get PDF
    Beginning with the basic issues of NLP, this chapter aims to chart the major research activities in this area since the last ARIST Chapter in 1996 (Haas, 1996), including: (i) natural language text processing systems - text summarization, information extraction, information retrieval, etc., including domain-specific applications; (ii) natural language interfaces; (iii) NLP in the context of www and digital libraries ; and (iv) evaluation of NLP systems
    corecore