519 research outputs found

    Transaction Propagation on Permissionless Blockchains: Incentive and Routing Mechanisms

    Full text link
    Existing permissionless blockchain solutions rely on peer-to-peer propagation mechanisms, where nodes in a network transfer transaction they received to their neighbors. Unfortunately, there is no explicit incentive for such transaction propagation. Therefore, existing propagation mechanisms will not be sustainable in a fully decentralized blockchain with rational nodes. In this work, we formally define the problem of incentivizing nodes for transaction propagation. We propose an incentive mechanism where each node involved in the propagation of a transaction receives a share of the transaction fee. We also show that our proposal is Sybil-proof. Furthermore, we combine the incentive mechanism with smart routing to reduce the communication and storage costs at the same time. The proposed routing mechanism reduces the redundant transaction propagation from the size of the network to a factor of average shortest path length. The routing mechanism is built upon a specific type of consensus protocol where the round leader who creates the transaction block is known in advance. Note that our routing mechanism is a generic one and can be adopted independently from the incentive mechanism.Comment: 2018 Crypto Valley Conference on Blockchain Technolog

    Impact of Geo-distribution and Mining Pools on Blockchains: A Study of Ethereum

    Full text link
    Given the large adoption and economical impact of permissionless blockchains, the complexity of the underlying systems and the adversarial environment in which they operate, it is fundamental to properly study and understand the emergent behavior and properties of these systems. We describe our experience on a detailed, one-month study of the Ethereum network from several geographically dispersed observation points. We leverage multiple geographic vantage points to assess the key pillars of Ethereum, namely geographical dispersion, network efficiency, blockchain efficiency and security, and the impact of mining pools. Among other new findings, we identify previously undocumented forms of selfish behavior and show that the prevalence of powerful mining pools exacerbates the geographical impact on block propagation delays. Furthermore, we provide a set of open measurement and processing tools, as well as the data set of the collected measurements, in order to promote further research on understanding permissionless blockchains.Comment: To appear in 50th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 202

    Security and Anonymity Aspects of the Network Layer of Permissionless Blockchains

    Get PDF
    Permissionless Blockchains sind dezentrale Systeme, die Konsens erzielen. Das prominenteste Beispiel einer Permissionless Blockchain ist das elektronische Zahlungssystem Bitcoin, welches Konsens über die von Teilnehmern des Systems erzeugten Finanztransaktionen erzielt. Während verteilter Konsens seit Jahrzehnten Gegenstand zahlreicher Forschungsarbeiten ist, ist Bitcoin das erste bekannte System, welches Konsens im sog. permissionless-Modell erzielt, d.h. ohne die vorausgehende Feststellung der Identitäten der Teilnehmer des Systems. Die Teilnehmer von Permissionless Blockchains kommunizieren über ein unstrukturiertes Peer-to-Peer (P2P) Netzwerk miteinander. Da das Verfahren zur Konsensbildung von Permissionless Blockchains auf Daten basiert, die über dieses P2P-Netzwerk übertragen werden, können Sicherheitslücken in der Netzwerkschicht auch die Konsensbildung und damit die angestrebte Funktion des Systems beeinflussen. Während unstrukturierte P2P-Netzwerke in der Vergangenheit umfassend analysiert wurden, führt ihr Einsatz in Permissionless Blockchains zu Sicherheitsanforderungen und Angreifermodellen, die bisher noch nicht berücksichtigt wurden. Obwohl einzelne Angriffe auf die Netzwerkschicht von Permissionless Blockchains analysiert wurden, ist unklar, welche Sicherheitseigenschaften die Netzwerkschicht von Permissionless Blockchains haben sollte. Diese Unklarheit motiviert die erste in dieser Dissertation behandelte Forschungsfrage: Wie können Anforderungen und Zielkonflikte, die in den Mechanismen der Netzwerkschicht von Permissionless Blockchains vorhanden sind, untersucht werden? In dieser Dissertation wird eine Systematisierung von Angriffen auf die Netzwerkschicht von Bitcoin vorgestellt, in der Angriffe hinsichtlich der angegriffenen Mechanismen und der Auswirkungen der Angriffe auf höhere Schichten des Systems kategorisiert werden. Basierend auf der Systematisierung werden fünf Anforderungen für die Netzwerkschicht von Permissionless Blockchains abgeleitet: Leistung, niedrige Beteiligungskosten, Anonymität, Robustheit gegen Denial-of-Service Angriffe sowie Topologieverschleierung. Darüber hinaus werden der Entwurfsraum der Netzwerkschicht aufgezeigt und der Einfluss von Entwurfsentscheidungen auf die Erfüllung von Anforderungen qualitativ untersucht. Die durchgeführten Systematisierungen weisen auf inhärente Zielkonflikte sowie Forschungsmöglichkeiten hin und unterstützen die Entwicklung von Permissionless Blockchains. Weiterhin wird auf Grundlage von seit 2015 durchgeführten Messungen eine Charakterisierung des Bitcoin-P2P-Netzwerks präsentiert. Die Charakterisierung ermöglicht die Parametrisierung und Validierung von Simulationsmodellen und die Bewertung der Zuverlässigkeit von realen Experimenten. Darüber hinaus gewährt die Netzwerkcharakterisierung Einblicke in das Verhalten von Netzwerkknoten und deren Betreibern. Beispielsweise kann gezeigt werden, dass Sybil-Ereignisse in der Vergangenheit im Bitcoin-P2P-Netzwerk stattgefunden haben und dass die Leistung und die Anonymitätseigenschaften der Transaktions- und Blockausbreitung durch Implementierungs- und Protokolländerungen verbessert worden sind. Auf Grundlage dieser Charakterisierung werden zwei ereignisdiskrete Simulationsmodelle des Bitcoin-P2P-Netzwerks entworfen. Die Modelle werden durch einen Vergleich der simulierten Informationsausbreitungsverzögerung mit der beobachteten Informationsausbreitungsverzögerung im realen Netzwerk validiert. Da der Vergleich eine hohe Übereinstimmung zeigt, ermöglichen die vorgestellten Simulationsmodelle die Simulation des Bitcoin-Netzwerks mit einer Genauigkeit, die für die Analyse von Angriffen im Bitcoin-Netzwerk ausreicht. Die vorgestellten Simulationsmodelle sowie die durchgeführte Systematisierung von Angriffen verdeutlichen die Bedeutung der Kenntnis der Netzwerktopologie als Grundlage für Forschung und die Analyse von Deanonymisierungsangriffe. Daher adressiert die zweite Forschungsfrage dieser Dissertation Methoden der Topologieinferenz und der Deanonymisierung: Unter welchen Voraussetzungen und in welchem Maße sind netzwerkbasierte Topologieinferenz und Deanonymisierung in Bitcoin (un)möglich? Diese Frage wird durch Anwendung der vorgeschlagenen Methodenkombination aus Messungen, Simulationen und Experimenten beantwortet. In dieser Dissertation werden vier verschiedene Methoden zur Topologieinferenz vorgestellt und unter Verwendung von Experimenten und Simulationsstudien analysiert. Anhand von Experimenten wird gezeigt, dass ein Angreifer, der in der Lage ist, Verbindungen zu allen Knoten des Netzwerks zu etablieren, die direkten Nachbarn eines Netzwerkknotens mit hoher Sensitivität (recall) und Genauigkeit (precision) (87% recall, 71% precision) durch die Veröffentlichung von widersprüchlichen Transaktionen im Netzwerk herausfinden kann. Unter der Annahme eines passiven Angreifers, der in der Lage ist, sich mit allen erreichbaren Netzwerkknoten zu verbinden, war 2016 ein Rückschluss auf die Nachbarn eines Netzwerkknotens mit einer Sensitivität von 40% bei einer Genauigkeit von 40% durch Beobachtung von mindestens acht Transaktionen, die von diesem Netzwerkknoten stammen, möglich. Darüber hinaus ist es möglich, die Akkumulation mehrere Transaktionen zum Zwecke der Topologieinferenz zu geringen Kosten auszunutzen. Allerdings bleibt die erwartete Inferenzqualität aufgrund fehlender Validierungsmöglichkeiten unklar. Schließlich kann simulativ gezeigt werden, dass der Peer-Discovery-Mechanismus eines P2P-Netzwerks bei bestimmte Parametrisierungen Topologinferenz ermöglichen kann. Abschließend wird die Möglichkeit einer netzwerkbasierten Deanonymisierung bewertet, indem analysiert wird, ob eine Korrelation zwischen der IP-Adresse des Netzwerkknotens, der eine Transaktion veröffentlicht, und dem mutmaßlichen Ersteller der Transaktion besteht. Der zugrundeliegende Datensatz basiert auf den durchgeführten Messungen und besteht aus fast 10 Millionen Transaktionen mit zugehörigen IP-Adressen. Es wird gezeigt, dass Transaktionen von 5% bis 8.3% der Benutzer auffallend häufig von einzelnen Netzwerkknoten veröffentlicht wurden, was diese Benutzer dem Risiko netzwerkbasierter Deanonymisierungsangriffe aussetzt

    Cloud/fog computing resource management and pricing for blockchain networks

    Full text link
    The mining process in blockchain requires solving a proof-of-work puzzle, which is resource expensive to implement in mobile devices due to the high computing power and energy needed. In this paper, we, for the first time, consider edge computing as an enabler for mobile blockchain. In particular, we study edge computing resource management and pricing to support mobile blockchain applications in which the mining process of miners can be offloaded to an edge computing service provider. We formulate a two-stage Stackelberg game to jointly maximize the profit of the edge computing service provider and the individual utilities of the miners. In the first stage, the service provider sets the price of edge computing nodes. In the second stage, the miners decide on the service demand to purchase based on the observed prices. We apply the backward induction to analyze the sub-game perfect equilibrium in each stage for both uniform and discriminatory pricing schemes. For the uniform pricing where the same price is applied to all miners, the existence and uniqueness of Stackelberg equilibrium are validated by identifying the best response strategies of the miners. For the discriminatory pricing where the different prices are applied to different miners, the Stackelberg equilibrium is proved to exist and be unique by capitalizing on the Variational Inequality theory. Further, the real experimental results are employed to justify our proposed model.Comment: 16 pages, double-column version, accepted by IEEE Internet of Things Journa

    SoK: Consensus in the Age of Blockchains

    Get PDF
    The core technical component of blockchains is consensus: how to reach agreement among a distributed network of nodes. A plethora of blockchain consensus protocols have been proposed---ranging from new designs, to novel modifications and extensions of consensus protocols from the classical distributed systems literature. The inherent complexity of consensus protocols and their rapid and dramatic evolution makes it hard to contextualize the design landscape. We address this challenge by conducting a systematization of knowledge of blockchain consensus protocols. After first discussing key themes in classical consensus protocols, we describe: (i) protocols based on proof-of-work; (ii) proof-of-X protocols that replace proof-of-work with more energy-efficient alternatives; and (iii) hybrid protocols that are compositions or variations of classical consensus protocols. This survey is guided by a systematization framework we develop, to highlight the various building blocks of blockchain consensus design, along with a discussion on their security and performance properties. We identify research gaps and insights for the community to consider in future research endeavours

    A Survey on Consensus Mechanisms and Mining Strategy Management in Blockchain Networks

    Full text link
    © 2013 IEEE. The past decade has witnessed the rapid evolution in blockchain technologies, which has attracted tremendous interests from both the research communities and industries. The blockchain network was originated from the Internet financial sector as a decentralized, immutable ledger system for transactional data ordering. Nowadays, it is envisioned as a powerful backbone/framework for decentralized data processing and data-driven self-organization in flat, open-access networks. In particular, the plausible characteristics of decentralization, immutability, and self-organization are primarily owing to the unique decentralized consensus mechanisms introduced by blockchain networks. This survey is motivated by the lack of a comprehensive literature review on the development of decentralized consensus mechanisms in blockchain networks. In this paper, we provide a systematic vision of the organization of blockchain networks. By emphasizing the unique characteristics of decentralized consensus in blockchain networks, our in-depth review of the state-of-the-art consensus protocols is focused on both the perspective of distributed consensus system design and the perspective of incentive mechanism design. From a game-theoretic point of view, we also provide a thorough review of the strategy adopted for self-organization by the individual nodes in the blockchain backbone networks. Consequently, we provide a comprehensive survey of the emerging applications of blockchain networks in a broad area of telecommunication. We highlight our special interest in how the consensus mechanisms impact these applications. Finally, we discuss several open issues in the protocol design for blockchain consensus and the related potential research directions
    corecore