28,261 research outputs found

    Evidential Label Propagation Algorithm for Graphs

    Get PDF
    Community detection has attracted considerable attention crossing many areas as it can be used for discovering the structure and features of complex networks. With the increasing size of social networks in real world, community detection approaches should be fast and accurate. The Label Propagation Algorithm (LPA) is known to be one of the near-linear solutions and benefits of easy implementation, thus it forms a good basis for efficient community detection methods. In this paper, we extend the update rule and propagation criterion of LPA in the framework of belief functions. A new community detection approach, called Evidential Label Propagation (ELP), is proposed as an enhanced version of conventional LPA. The node influence is first defined to guide the propagation process. The plausibility is used to determine the domain label of each node. The update order of nodes is discussed to improve the robustness of the method. ELP algorithm will converge after the domain labels of all the nodes become unchanged. The mass assignments are calculated finally as memberships of nodes. The overlapping nodes and outliers can be detected simultaneously through the proposed method. The experimental results demonstrate the effectiveness of ELP.Comment: 19th International Conference on Information Fusion, Jul 2016, Heidelber, Franc

    DEMON: a Local-First Discovery Method for Overlapping Communities

    Full text link
    Community discovery in complex networks is an interesting problem with a number of applications, especially in the knowledge extraction task in social and information networks. However, many large networks often lack a particular community organization at a global level. In these cases, traditional graph partitioning algorithms fail to let the latent knowledge embedded in modular structure emerge, because they impose a top-down global view of a network. We propose here a simple local-first approach to community discovery, able to unveil the modular organization of real complex networks. This is achieved by democratically letting each node vote for the communities it sees surrounding it in its limited view of the global system, i.e. its ego neighborhood, using a label propagation algorithm; finally, the local communities are merged into a global collection. We tested this intuition against the state-of-the-art overlapping and non-overlapping community discovery methods, and found that our new method clearly outperforms the others in the quality of the obtained communities, evaluated by using the extracted communities to predict the metadata about the nodes of several real world networks. We also show how our method is deterministic, fully incremental, and has a limited time complexity, so that it can be used on web-scale real networks.Comment: 9 pages; Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, August 12-16, 201

    Semi-Supervised Overlapping Community Finding based on Label Propagation with Pairwise Constraints

    Get PDF
    Algorithms for detecting communities in complex networks are generally unsupervised, relying solely on the structure of the network. However, these methods can often fail to uncover meaningful groupings that reflect the underlying communities in the data, particularly when those structures are highly overlapping. One way to improve the usefulness of these algorithms is by incorporating additional background information, which can be used as a source of constraints to direct the community detection process. In this work, we explore the potential of semi-supervised strategies to improve algorithms for finding overlapping communities in networks. Specifically, we propose a new method, based on label propagation, for finding communities using a limited number of pairwise constraints. Evaluations on synthetic and real-world datasets demonstrate the potential of this approach for uncovering meaningful community structures in cases where each node can potentially belong to more than one community.Comment: Fix table

    On Efficiently Detecting Overlapping Communities over Distributed Dynamic Graphs

    Full text link
    Modern networks are of huge sizes as well as high dynamics, which challenges the efficiency of community detection algorithms. In this paper, we study the problem of overlapping community detection on distributed and dynamic graphs. Given a distributed, undirected and unweighted graph, the goal is to detect overlapping communities incrementally as the graph is dynamically changing. We propose an efficient algorithm, called \textit{randomized Speaker-Listener Label Propagation Algorithm} (rSLPA), based on the \textit{Speaker-Listener Label Propagation Algorithm} (SLPA) by relaxing the probability distribution of label propagation. Besides detecting high-quality communities, rSLPA can incrementally update the detected communities after a batch of edge insertion and deletion operations. To the best of our knowledge, rSLPA is the first algorithm that can incrementally capture the same communities as those obtained by applying the detection algorithm from the scratch on the updated graph. Extensive experiments are conducted on both synthetic and real-world datasets, and the results show that our algorithm can achieve high accuracy and efficiency at the same time.Comment: A short version of this paper will be published as ICDE'2018 poste

    Local Edge Betweenness based Label Propagation for Community Detection in Complex Networks

    Full text link
    Nowadays, identification and detection community structures in complex networks is an important factor in extracting useful information from networks. Label propagation algorithm with near linear-time complexity is one of the most popular methods for detecting community structures, yet its uncertainty and randomness is a defective factor. Merging LPA with other community detection metrics would improve its accuracy and reduce instability of LPA. Considering this point, in this paper we tried to use edge betweenness centrality to improve LPA performance. On the other hand, calculating edge betweenness centrality is expensive, so as an alternative metric, we try to use local edge betweenness and present LPA-LEB (Label Propagation Algorithm Local Edge Betweenness). Experimental results on both real-world and benchmark networks show that LPA-LEB possesses higher accuracy and stability than LPA when detecting community structures in networks.Comment: 6 page
    • 

    corecore