587 research outputs found

    On polymorphic logical gates in sub-excitable chemical medium

    Get PDF
    In a sub-excitable light-sensitive Belousov-Zhabotinsky chemical medium an asymmetric disturbance causes the formation of localized traveling wave-fragments. Under the right conditions these wave-fragment can conserve their shape and velocity vectors for extended time periods. The size and life span of a fragment depend on the illumination level of the medium. When two or more wave-fragments collide they annihilate or merge into a new wave-fragment. In computer simulations based on the Oregonator model we demonstrate that the outcomes of inter-fragment collisions can be controlled by varying the illumination level applied to the medium. We interpret these wave-fragments as values of Boolean variables and design collision-based polymorphic logical gates. The gate implements operation XNOR for low illumination, and it acts as NOR gate for high illumination. As a NOR gate is a universal gate then we are able to demonstrate that a simulated light sensitive BZ medium exhibits computational universality

    Excitable Delaunay triangulations

    Full text link
    In an excitable Delaunay triangulation every node takes three states (resting, excited and refractory) and updates its state in discrete time depending on a ratio of excited neighbours. All nodes update their states in parallel. By varying excitability of nodes we produce a range of phenomena, including reflection of excitation wave from edge of triangulation, backfire of excitation, branching clusters of excitation and localized excitation domains. Our findings contribute to studies of propagating perturbations and waves in non-crystalline substrates

    Towards constructing one-bit binary adder in excitable chemical medium

    Full text link
    Light-sensitive modification (ruthenium catalysed) of the Belousov-Zhabotinsky medium exhibits various regimes of excitability depending on the levels of illumination. For certain values of illumination the medium switches to a sub-excitable mode. An asymmetric perturbation of the medium leads to formation of a travelling localized excitation, a wave-fragment which moves along a predetermined trajectory, ideally preserving its shape and velocity. To implement collision-based computing with such wave-fragments we represent values of Boolean variables in presence/absence of a wave-fragment at specific sites of medium. When two wave-fragments collide they either annihilate, or form new wave-fragments. The trajectories of the wave-fragments after the collision represent a result of the computation, e.g. a simple logical gate. Wave-fragments in the sub-excitable medium are famously difficult to control. Therefore, we adopted a hybrid procedure in order to construct collision-based logical gates: we used channels, defined by lower levels illumination to subtly tune the shape of a propagating wave-fragment and allow the wave-fragments to collide at the junctions between channels. Using this methodology we were able to implement both in theoretical models (using the Oregonator) and in experiment two interaction-based logical gates and assemble the gates into a basic one-bit binary adder. We present the first ever experimental approach towards constructing arithmetical circuits in spatially-extended excitable chemical systems

    Physarum machines for space missions

    Get PDF
    A Physarum machine is a programmable amorphous biological computer experimentally implemented in plasmodium Physarum polycephalum. We overview a range of tasks solvable by Physarum machines and speculate on how the Physarum machines could be used in future space missions

    On computing in fine-grained compartmentalised Belousov-Zhabotinsky medium

    Full text link
    We introduce results of computer experiments on information processing in a hexagonal array of vesicles filled with Belousov-Zhabotinsky (BZ) solution in a sub-excitable mode. We represent values of Boolean variables by excitation wave-fragments and implement basic logical gates by colliding the wave-fragments. We show that a vesicle filled with BZ mixture can implement a range of basic logical functions. We cascade BZ-vesicle logical gates into arithmetic circuits implementing addition of two one-bit binary numbers. We envisage that our theoretical results will be applied in chemical laboratory designs of massive-parallel computers based on fine-grained compartmentalisation of excitable chemical systems

    READUP BUILDUP. Thync - instant α-readings

    Get PDF

    Towards a Brain-inspired Information Processing System: Modelling and Analysis of Synaptic Dynamics: Towards a Brain-inspired InformationProcessing System: Modelling and Analysis ofSynaptic Dynamics

    Get PDF
    Biological neural systems (BNS) in general and the central nervous system (CNS) specifically exhibit a strikingly efficient computational power along with an extreme flexible and adaptive basis for acquiring and integrating new knowledge. Acquiring more insights into the actual mechanisms of information processing within the BNS and their computational capabilities is a core objective of modern computer science, computational sciences and neuroscience. Among the main reasons of this tendency to understand the brain is to help in improving the quality of life of people suffer from loss (either partial or complete) of brain or spinal cord functions. Brain-computer-interfaces (BCI), neural prostheses and other similar approaches are potential solutions either to help these patients through therapy or to push the progress in rehabilitation. There is however a significant lack of knowledge regarding the basic information processing within the CNS. Without a better understanding of the fundamental operations or sequences leading to cognitive abilities, applications like BCI or neural prostheses will keep struggling to find a proper and systematic way to help patients in this regard. In order to have more insights into these basic information processing methods, this thesis presents an approach that makes a formal distinction between the essence of being intelligent (as for the brain) and the classical class of artificial intelligence, e.g. with expert systems. This approach investigates the underlying mechanisms allowing the CNS to be capable of performing a massive amount of computational tasks with a sustainable efficiency and flexibility. This is the essence of being intelligent, i.e. being able to learn, adapt and to invent. The approach used in the thesis at hands is based on the hypothesis that the brain or specifically a biological neural circuitry in the CNS is a dynamic system (network) that features emergent capabilities. These capabilities can be imported into spiking neural networks (SNN) by emulating the dynamic neural system. Emulating the dynamic system requires simulating both the inner workings of the system and the framework of performing the information processing tasks. Thus, this work comprises two main parts. The first part is concerned with introducing a proper and a novel dynamic synaptic model as a vital constitute of the inner workings of the dynamic neural system. This model represents a balanced integration between the needed biophysical details and being computationally inexpensive. Being a biophysical model is important to allow for the abilities of the target dynamic system to be inherited, and being simple is needed to allow for further implementation in large scale simulations and for hardware implementation in the future. Besides, the energy related aspects of synaptic dynamics are studied and linked to the behaviour of the networks seeking for stable states of activities. The second part of the thesis is consequently concerned with importing the processing framework of the dynamic system into the environment of SNN. This part of the study investigates the well established concept of binding by synchrony to solve the information binding problem and to proposes the concept of synchrony states within SNN. The concepts of computing with states are extended to investigate a computational model that is based on the finite-state machines and reservoir computing. Biological plausible validations of the introduced model and frameworks are performed. Results and discussions of these validations indicate that this study presents a significant advance on the way of empowering the knowledge about the mechanisms underpinning the computational power of CNS. Furthermore it shows a roadmap on how to adopt the biological computational capabilities in computation science in general and in biologically-inspired spiking neural networks in specific. Large scale simulations and the development of neuromorphic hardware are work-in-progress and future work. Among the applications of the introduced work are neural prostheses and bionic automation systems

    Information storing by biomagnetites

    Full text link
    Since the discovery of the presence of biogenic magnetites in living organisms, there have been speculations on the role that these biomagnetites play in cellular processes. It seems that the formation of biomagnetite crystals is a universal phenomenon and not an exception in living cells. Many experimental facts show that features of organic and inorganic processes could be indistinguishable at nanoscale levels. Living cells are quantum "devices" rather than simple electronic devices utilizing only the charge of conduction electrons. In our opinion, due to their unusual biophysical properties, special biomagnetites must have a biological function in living cells in general and in the brain in particular. In this paper we advance a hypothesis that while biomagnetites are developed jointly with organic molecules and cellular electromagnetic fields in cells, they can record information about the Earth's magnetic vector potential of the entire flight in migratory birds.Comment: 17 pages, 3 figure
    corecore