22 research outputs found

    A Comparative Study of Population-Graph Construction Methods and Graph Neural Networks for Brain Age Regression

    Full text link
    The difference between the chronological and biological brain age of a subject can be an important biomarker for neurodegenerative diseases, thus brain age estimation can be crucial in clinical settings. One way to incorporate multimodal information into this estimation is through population graphs, which combine various types of imaging data and capture the associations among individuals within a population. In medical imaging, population graphs have demonstrated promising results, mostly for classification tasks. In most cases, the graph structure is pre-defined and remains static during training. However, extracting population graphs is a non-trivial task and can significantly impact the performance of Graph Neural Networks (GNNs), which are sensitive to the graph structure. In this work, we highlight the importance of a meaningful graph construction and experiment with different population-graph construction methods and their effect on GNN performance on brain age estimation. We use the homophily metric and graph visualizations to gain valuable quantitative and qualitative insights on the extracted graph structures. For the experimental evaluation, we leverage the UK Biobank dataset, which offers many imaging and non-imaging phenotypes. Our results indicate that architectures highly sensitive to the graph structure, such as Graph Convolutional Network (GCN) and Graph Attention Network (GAT), struggle with low homophily graphs, while other architectures, such as GraphSage and Chebyshev, are more robust across different homophily ratios. We conclude that static graph construction approaches are potentially insufficient for the task of brain age estimation and make recommendations for alternative research directions.Comment: Accepted at GRAIL, MICCAI 202

    Inherently Interpretable Multi-Label Classification Using Class-Specific Counterfactuals

    Full text link
    Interpretability is essential for machine learning algorithms in high-stakes application fields such as medical image analysis. However, high-performing black-box neural networks do not provide explanations for their predictions, which can lead to mistrust and suboptimal human-ML collaboration. Post-hoc explanation techniques, which are widely used in practice, have been shown to suffer from severe conceptual problems. Furthermore, as we show in this paper, current explanation techniques do not perform adequately in the multi-label scenario, in which multiple medical findings may co-occur in a single image. We propose Attri-Net, an inherently interpretable model for multi-label classification. Attri-Net is a powerful classifier that provides transparent, trustworthy, and human-understandable explanations. The model first generates class-specific attribution maps based on counterfactuals to identify which image regions correspond to certain medical findings. Then a simple logistic regression classifier is used to make predictions based solely on these attribution maps. We compare Attri-Net to five post-hoc explanation techniques and one inherently interpretable classifier on three chest X-ray datasets. We find that Attri-Net produces high-quality multi-label explanations consistent with clinical knowledge and has comparable classification performance to state-of-the-art classification models.Comment: Accepted to MIDL 202

    A Survey on Deep Learning in Medical Image Registration: New Technologies, Uncertainty, Evaluation Metrics, and Beyond

    Full text link
    Over the past decade, deep learning technologies have greatly advanced the field of medical image registration. The initial developments, such as ResNet-based and U-Net-based networks, laid the groundwork for deep learning-driven image registration. Subsequent progress has been made in various aspects of deep learning-based registration, including similarity measures, deformation regularizations, and uncertainty estimation. These advancements have not only enriched the field of deformable image registration but have also facilitated its application in a wide range of tasks, including atlas construction, multi-atlas segmentation, motion estimation, and 2D-3D registration. In this paper, we present a comprehensive overview of the most recent advancements in deep learning-based image registration. We begin with a concise introduction to the core concepts of deep learning-based image registration. Then, we delve into innovative network architectures, loss functions specific to registration, and methods for estimating registration uncertainty. Additionally, this paper explores appropriate evaluation metrics for assessing the performance of deep learning models in registration tasks. Finally, we highlight the practical applications of these novel techniques in medical imaging and discuss the future prospects of deep learning-based image registration

    Edge-weighted pFISTA-Net for MRI Reconstruction

    Full text link
    Deep learning based on unrolled algorithm has served as an effective method for accelerated magnetic resonance imaging (MRI). However, many methods ignore the direct use of edge information to assist MRI reconstruction. In this work, we present the edge-weighted pFISTA-Net that directly applies the detected edge map to the soft-thresholding part of pFISTA-Net. The soft-thresholding value of different regions will be adjusted according to the edge map. Experimental results of a public brain dataset show that the proposed yields reconstructions with lower error and better artifact suppression compared with the state-of-the-art deep learning-based methods. The edge-weighted pFISTA-Net also shows robustness for different undersampling masks and edge detection operators. In addition, we extend the edge weighted structure to joint reconstruction and segmentation network and obtain improved reconstruction performance and more accurate segmentation results

    Two Independent Teachers are Better Role Model

    Full text link
    Recent deep learning models have attracted substantial attention in infant brain analysis. These models have performed state-of-the-art performance, such as semi-supervised techniques (e.g., Temporal Ensembling, mean teacher). However, these models depend on an encoder-decoder structure with stacked local operators to gather long-range information, and the local operators limit the efficiency and effectiveness. Besides, the MRIMRI data contain different tissue properties (TPsTPs) such as T1T1 and T2T2. One major limitation of these models is that they use both data as inputs to the segment process, i.e., the models are trained on the dataset once, and it requires much computational and memory requirements during inference. In this work, we address the above limitations by designing a new deep-learning model, called 3D-DenseUNet, which works as adaptable global aggregation blocks in down-sampling to solve the issue of spatial information loss. The self-attention module connects the down-sampling blocks to up-sampling blocks, and integrates the feature maps in three dimensions of spatial and channel, effectively improving the representation potential and discriminating ability of the model. Additionally, we propose a new method called Two Independent Teachers (2IT2IT), that summarizes the model weights instead of label predictions. Each teacher model is trained on different types of brain data, T1T1 and T2T2, respectively. Then, a fuse model is added to improve test accuracy and enable training with fewer parameters and labels compared to the Temporal Ensembling method without modifying the network architecture. Empirical results demonstrate the effectiveness of the proposed method.Comment: This manuscript contains 14 pages, 7 figures. We have submitted the manuscript to Journal of IEEE Transactions on Medical Imaging (TMI) in June 202

    Multi-task learning for joint weakly-supervised segmentation and aortic arch anomaly classification in fetal cardiac MRI

    Full text link
    Congenital Heart Disease (CHD) is a group of cardiac malformations present already during fetal life, representing the prevailing category of birth defects globally. Our aim in this study is to aid 3D fetal vessel topology visualisation in aortic arch anomalies, a group which encompasses a range of conditions with significant anatomical heterogeneity. We present a multi-task framework for automated multi-class fetal vessel segmentation from 3D black blood T2w MRI and anomaly classification. Our training data consists of binary manual segmentation masks of the cardiac vessels' region in individual subjects and fully-labelled anomaly-specific population atlases. Our framework combines deep learning label propagation using VoxelMorph with 3D Attention U-Net segmentation and DenseNet121 anomaly classification. We target 11 cardiac vessels and three distinct aortic arch anomalies, including double aortic arch, right aortic arch, and suspected coarctation of the aorta. We incorporate an anomaly classifier into our segmentation pipeline, delivering a multi-task framework with the primary motivation of correcting topological inaccuracies of the segmentation. The hypothesis is that the multi-task approach will encourage the segmenter network to learn anomaly-specific features. As a secondary motivation, an automated diagnosis tool may have the potential to enhance diagnostic confidence in a decision support setting. Our results showcase that our proposed training strategy significantly outperforms label propagation and a network trained exclusively on propagated labels. Our classifier outperforms a classifier trained exclusively on T2w volume images, with an average balanced accuracy of 0.99 (0.01) after joint training. Adding a classifier improves the anatomical and topological accuracy of all correctly classified double aortic arch subjects.Comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2023:01

    Aligning individual brains with Fused Unbalanced Gromov-Wasserstein

    Full text link
    Individual brains vary in both anatomy and functional organization, even within a given species. Inter-individual variability is a major impediment when trying to draw generalizable conclusions from neuroimaging data collected on groups of subjects. Current co-registration procedures rely on limited data, and thus lead to very coarse inter-subject alignments. In this work, we present a novel method for inter-subject alignment based on Optimal Transport, denoted as Fused Unbalanced Gromov Wasserstein (FUGW). The method aligns cortical surfaces based on the similarity of their functional signatures in response to a variety of stimulation settings, while penalizing large deformations of individual topographic organization. We demonstrate that FUGW is well-suited for whole-brain landmark-free alignment. The unbalanced feature allows to deal with the fact that functional areas vary in size across subjects. Our results show that FUGW alignment significantly increases between-subject correlation of activity for independent functional data, and leads to more precise mapping at the group level

    Improving the domain generalization and robustness of neural networks for medical imaging

    Get PDF
    Deep neural networks are powerful tools to process medical images, with great potential to accelerate clinical workflows and facilitate large-scale studies. However, in order to achieve satisfactory performance at deployment, these networks generally require massive labeled data collected from various domains (e.g., hospitals, scanners), which is rarely available in practice. The main goal of this work is to improve the domain generalization and robustness of neural networks for medical imaging when labeled data is limited. First, we develop multi-task learning methods to exploit auxiliary data to enhance networks. We first present a multi-task U-net that performs image classification and MR atrial segmentation simultaneously. We then present a shape-aware multi-view autoencoder together with a multi-view U-net, which enables extracting useful shape priors from complementary long-axis views and short-axis views in order to assist the left ventricular myocardium segmentation task on the short-axis MR images. Experimental results show that the proposed networks successfully leverage complementary information from auxiliary tasks to improve model generalization on the main segmentation task. Second, we consider utilizing unlabeled data. We first present an adversarial data augmentation method with bias fields to improve semi-supervised learning for general medical image segmentation tasks. We further explore a more challenging setting where the source and the target images are from different data distributions. We demonstrate that an unsupervised image style transfer method can bridge the domain gap, successfully transferring the knowledge learned from labeled balanced Steady-State Free Precession (bSSFP) images to unlabeled Late Gadolinium Enhancement (LGE) images, achieving state-of-the-art performance on a public multi-sequence cardiac MR segmentation challenge. For scenarios with limited training data from a single domain, we first propose a general training and testing pipeline to improve cardiac image segmentation across various unseen domains. We then present a latent space data augmentation method with a cooperative training framework to further enhance model robustness against unseen domains and imaging artifacts.Open Acces
    corecore