328,517 research outputs found

    The VWFA: It\u27s not just for words anymore

    Get PDF
    Reading is an important but phylogenetically new skill. While neuroimaging studies have identified brain regions used in reading, it is unclear to what extent these regions become specialized for use predominantly in reading vs. other tasks. Over the past several years, our group has published three studies addressing this question, particularly focusing on whether the putative visual word form area (VWFA) is used predominantly in reading, or whether it is used more generally in a number of tasks. Our three studies utilize a range of neuroimaging techniques, including task based fMRI experiments, a seed based resting state functional connectivity (RSFC) experiment, and a network based RSFC experiment. Overall, our studies indicate that the VWFA is not used specifically or even predominantly for reading. Rather the VWFA is a general use region that has processing properties making it particularly useful for reading, though it continues to be used in any task that requires its general processing properties. Our network based RSFC analysis extends this finding to other regions typically thought to be used predominantly for reading. Here, we review these findings and describe how the three studies complement each other. Then, we argue that conceptualizing the VWFA as a brain region with specific processing characteristics rather than a brain region devoted to a specific stimulus class, allows us to better explain the activity seen in this region during a variety of tasks. Having this type of conceptualization not only provides a better understanding of the VWFA but also provides a framework for understanding other brain regions, as it affords an explanation of function that is in keeping with the long history of studying the brain in terms of the type of information processing performed (Posner, 1978)

    Beyond Stemming and Lemmatization: Ultra-stemming to Improve Automatic Text Summarization

    Full text link
    In Automatic Text Summarization, preprocessing is an important phase to reduce the space of textual representation. Classically, stemming and lemmatization have been widely used for normalizing words. However, even using normalization on large texts, the curse of dimensionality can disturb the performance of summarizers. This paper describes a new method for normalization of words to further reduce the space of representation. We propose to reduce each word to its initial letters, as a form of Ultra-stemming. The results show that Ultra-stemming not only preserve the content of summaries produced by this representation, but often the performances of the systems can be dramatically improved. Summaries on trilingual corpora were evaluated automatically with Fresa. Results confirm an increase in the performance, regardless of summarizer system used.Comment: 22 pages, 12 figures, 9 table

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright Β© 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Classical light vs. nonclassical light: Characterizations and interesting applications

    Full text link
    We briefly review the ideas that have shaped modern optics and have led to various applications of light ranging from spectroscopy to astrophysics, and street lights to quantum communication. The review is primarily focused on the modern applications of classical light and nonclassical light. Specific attention has been given to the applications of squeezed, antibunched, and entangled states of radiation field. Applications of Fock states (especially single photon states) in the field of quantum communication are also discussed.Comment: 32 pages, 3 figures, a review on applications of ligh

    Interactions, structure and properties in poly(lactic acid)/thermoplastic polymer blends

    Get PDF
    Blends were prepared from poly(lactic acid) (PLA) and three thermoplastics, polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA). Rheological and mechanical properties, structure and component interactions were determined by various methods. The results showed that the structure and properties of the blends cover a relatively wide range. All three blends have heterogeneous structure, but the size of the dispersed particles differs by an order of magnitude indicating dissimilar interactions for the corresponding pairs. Properties change accordingly, the blend containing the smallest dispersed particles has the largest tensile strength, while PLA/PS blends with the coarsest structure have the smallest. The latter blends are also very brittle. Component interactions were estimated by four different methods, the determination of the size of the dispersed particles, the calculation of the Flory-Huggins interaction parameter from solvent absorption, from solubility parameters, and by the quantitative evaluation of the composition dependence of tensile strength. All approaches led to the same result indicating strong interaction for the PLA/PMMA pair and weak for PLA and PS. A general correlation was established between interactions and the mechanical properties of the blends

    Visual selective behavior can be triggered by a feed-forward process

    Get PDF
    The ventral visual pathway implements object recognition and categorization in a hierarchy of processing areas with neuronal selectivities of increasing complexity. The presence of massive feedback connections within this hierarchy raises the possibility that normal visual processing relies on the use of computational loops. It is not known, however, whether object recognition can be performed at all without such loops (i.e., in a purely feed-forward mode). By analyzing the time course of reaction times in a masked natural scene categorization paradigm, we show that the human visual system can generate selective motor responses based on a single feed-forward pass. We confirm these results using a more constrained letter discrimination task, in which the rapid succession of a target and mask is actually perceived as a distractor. We show that a masked stimulus presented for only 26 msecβ€”and often not consciously perceivedβ€”can fully determine the earliest selective motor responses: The neural representations of the stimulus and mask are thus kept separated during a short period corresponding to the feed-forward "sweep." Therefore, feedback loops do not appear to be "mandatory" for visual processing. Rather, we found that such loops allow the masked stimulus to reverberate in the visual system and affect behavior for nearly 150 msec after the feed-forward sweep

    The role of the posterior fusiform gyrus in reading

    Get PDF
    Studies of skilled reading [Price, C. J., & Mechelli, A. Reading and reading disturbance. Current Opinion in Neurobiology, 15, 231–238, 2005], its acquisition in children [Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P., et al. Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52, 101–110, 2002; Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. Development of neural mechanisms for reading. Nature Neuroscience, 6, 767–773, 2003], and its impairment in patients with pure alexia [Leff, A. P., Crewes, H., Plant, G. T., Scott, S. K., Kennard, C., & Wise, R. J. The functional anatomy of single word reading in patients with hemianopic and pure alexia. Brain, 124, 510–521, 2001] all highlight the importance of the left posterior fusiform cortex in visual word recognition. We used visual masked priming and functional magnetic resonance imaging to elucidate the specific functional contribution of this region to reading and found that (1) unlike words, repetition of pseudowords (β€œsolst-solst”) did not produce a neural priming effect in this region, (2) orthographically related words such as β€œcorner-corn” did produce a neural priming effect, but (3) this orthographic priming effect was reduced when prime-target pairs were semantically related (β€œteacher-teach”). These findings conflict with the notion of stored visual word forms and instead suggest that this region acts as an interface between visual form information and higher order stimulus properties such as its associated sound and meaning. More importantly, this function is not specific to reading but is also engaged when processing any meaningful visual stimulus

    Grey matter alterations co-localize with functional abnormalities in developmental dyslexia : an ALE meta-analysis

    Get PDF
    The neural correlates of developmental dyslexia have been investigated intensively over the last two decades and reliable evidence for a dysfunction of left-hemispheric reading systems in dyslexic readers has been found in functional neuroimaging studies. In addition, structural imaging studies using voxel-based morphometry (VBM) demonstrated grey matter reductions in dyslexics in several brain regions. To objectively assess the consistency of these findings, we performed activation likelihood estimation (ALE) meta-analysis on nine published VBM studies reporting 62 foci of grey matter reduction in dyslexic readers. We found six significant clusters of convergence in bilateral temporo-parietal and left occipito-temporal cortical regions and in the cerebellum bilaterally. To identify possible overlaps between structural and functional deviations in dyslexic readers, we conducted additional ALE meta-analyses of imaging studies reporting functional underactivations (125 foci from 24 studies) or overactivations (95 foci from 11 studies ) in dyslexics. Subsequent conjunction analyses revealed overlaps between the results of the VBM meta-analysis and the meta-analysis of functional underactivations in the fusiform and supramarginal gyri of the left hemisphere. An overlap between VBM results and the meta-analysis of functional overactivations was found in the left cerebellum. The results of our study provide evidence for consistent grey matter variations bilaterally in the dyslexic brain and substantial overlap of these structural variations with functional abnormalities in left hemispheric regions
    • …
    corecore