467,401 research outputs found

    Dynamic Matching Market Design

    Full text link
    We introduce a simple benchmark model of dynamic matching in networked markets, where agents arrive and depart stochastically and the network of acceptable transactions among agents forms a random graph. We analyze our model from three perspectives: waiting, optimization, and information. The main insight of our analysis is that waiting to thicken the market can be substantially more important than increasing the speed of transactions, and this is quite robust to the presence of waiting costs. From an optimization perspective, naive local algorithms, that choose the right time to match agents but do not exploit global network structure, can perform very close to optimal algorithms. From an information perspective, algorithms that employ even partial information on agents' departure times perform substantially better than those that lack such information. To elicit agents' departure times, we design an incentive-compatible continuous-time dynamic mechanism without transfers

    Duality between Feature Selection and Data Clustering

    Full text link
    The feature-selection problem is formulated from an information-theoretic perspective. We show that the problem can be efficiently solved by an extension of the recently proposed info-clustering paradigm. This reveals the fundamental duality between feature selection and data clustering,which is a consequence of the more general duality between the principal partition and the principal lattice of partitions in combinatorial optimization

    A Tractable Fault Detection and Isolation Approach for Nonlinear Systems with Probabilistic Performance

    Full text link
    This article presents a novel perspective along with a scalable methodology to design a fault detection and isolation (FDI) filter for high dimensional nonlinear systems. Previous approaches on FDI problems are either confined to linear systems or they are only applicable to low dimensional dynamics with specific structures. In contrast, shifting attention from the system dynamics to the disturbance inputs, we propose a relaxed design perspective to train a linear residual generator given some statistical information about the disturbance patterns. That is, we propose an optimization-based approach to robustify the filter with respect to finitely many signatures of the nonlinearity. We then invoke recent results in randomized optimization to provide theoretical guarantees for the performance of the proposed filer. Finally, motivated by a cyber-physical attack emanating from the vulnerabilities introduced by the interaction between IT infrastructure and power system, we deploy the developed theoretical results to detect such an intrusion before the functionality of the power system is disrupted

    On a New Type of Information Processing for Efficient Management of Complex Systems

    Full text link
    It is a challenge to manage complex systems efficiently without confronting NP-hard problems. To address the situation we suggest to use self-organization processes of prime integer relations for information processing. Self-organization processes of prime integer relations define correlation structures of a complex system and can be equivalently represented by transformations of two-dimensional geometrical patterns determining the dynamics of the system and revealing its structural complexity. Computational experiments raise the possibility of an optimality condition of complex systems presenting the structural complexity of a system as a key to its optimization. From this perspective the optimization of a system could be all about the control of the structural complexity of the system to make it consistent with the structural complexity of the problem. The experiments also indicate that the performance of a complex system may behave as a concave function of the structural complexity. Therefore, once the structural complexity could be controlled as a single entity, the optimization of a complex system would be potentially reduced to a one-dimensional concave optimization irrespective of the number of variables involved its description. This might open a way to a new type of information processing for efficient management of complex systems.Comment: 5 pages, 2 figures, to be presented at the International Conference on Complex Systems, Boston, October 28 - November 2, 200

    Measuring performance in healthcare

    Get PDF
    Hospitals invest in process management and process optimization from an organizational and patient perspective to increase efficiency and simultaneously the quality of their operations. Consequently, the use of process-oriented performance measurement systems gains importance. This study contributes to the development of a dashboard for the process of hip surgery using a case study design. We integrate strategic goals of hospital management and different stakeholders with the analysis of Business Process Management and Hospital Information Systems’ data. Process-oriented KPIs were integrated into the dashboard using a three-step approach. Dashboards enable healthcare organizations to put process-oriented performance measurement into practice

    Distributed Model Predictive Control Using a Chain of Tubes

    Full text link
    A new distributed MPC algorithm for the regulation of dynamically coupled subsystems is presented in this paper. The current control action is computed via two robust controllers working in a nested fashion. The inner controller builds a nominal reference trajectory from a decentralized perspective. The outer controller uses this information to take into account the effects of the coupling and generate a distributed control action. The tube-based approach to robustness is employed. A supplementary constraint is included in the outer optimization problem to provide recursive feasibility of the overall controllerComment: Accepted for presentation at the UKACC CONTROL 2016 conference (Belfast, UK
    • …
    corecore