419 research outputs found

    Multi-objective optimization framework for networked predictive controller design

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Networked Control Systems (NCSs) often suffer from random packet dropouts which deteriorate overall system's stability and performance. To handle the ill effects of random packet losses in feedback control systems, closed over communication network, a state feedback controller with predictive gains has been designed. To achieve improved performance, an optimization based controller design framework has been proposed in this paper with Linear Matrix Inequality (LMI) constraints, to ensure guaranteed stability. Different conflicting objective functions have been optimized with Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The methodology proposed in this paper not only gives guaranteed closed loop stability in the sense of Lyapunov, even in the presence of random packet losses, but also gives an optimization trade-off between two conflicting time domain control objectives

    Fault-Tolerant Secure Data Aggregation Schemes in Smart Grids: Techniques, Design Challenges, and Future Trends

    Get PDF
    Secure data aggregation is an important process that enables a smart meter to perform efficiently and accurately. However, the fault tolerance and privacy of the user data are the most serious concerns in this process. While the security issues of Smart Grids are extensively studied, these two issues have been ignored so far. Therefore, in this paper, we present a comprehensive survey of fault-tolerant and differential privacy schemes for the Smart Gird. We selected papers from 2010 to 2021 and studied the schemes that are specifically related to fault tolerance and differential privacy. We divided all existing schemes based on the security properties, performance evaluation, and security attacks. We provide a comparative analysis for each scheme based on the cryptographic approach used. One of the drawbacks of existing surveys on the Smart Grid is that they have not discussed fault tolerance and differential privacy as a major area and consider them only as a part of privacy preservation schemes. On the basis of our work, we identified further research areas that can be explored

    Control Strategies for Improving Cloud Service Robustness

    Get PDF
    This thesis addresses challenges in increasing the robustness of cloud-deployed applications and services to unexpected events and dynamic workloads. Without precautions, hardware failures and unpredictable large traffic variations can quickly degrade the performance of an application due to mismatch between provisioned resources and capacity needs. Similarly, disasters, such as power outages and fire, are unexpected events on larger scale that threatens the integrity of the underlying infrastructure on which an application is deployed.First, the self-adaptive software concept of brownout is extended to replicated cloud applications. By monitoring the performance of each application replica, brownout is able to counteract temporary overload situations by reducing the computational complexity of jobs entering the system. To avoid existing load balancers interfering with the brownout functionality, brownout-aware load balancers are introduced. Simulation experiments show that the proposed load balancers outperform existing load balancers in providing a high quality of service to as many end users as possible. Experiments in a testbed environment further show how a replicated brownout-enabled application is able to maintain high performance during overloads as compared to its non-brownout equivalent.Next, a feedback controller for cloud autoscaling is introduced. Using a novel way of modeling the dynamics of typical cloud application, a mechanism similar to the classical Smith predictor to compensate for delays in reconfiguring resource provisioning is presented. Simulation experiments show that the feedback controller is able to achieve faster control of the response times of a cloud application as compared to a threshold-based controller.Finally, a solution for handling the trade-off between performance and disaster tolerance for geo-replicated cloud applications is introduced. An automated mechanism for differentiating application traffic and replication traffic, and dynamically managing their bandwidth allocations using an MPC controller is presented and evaluated in simulation. Comparisons with commonly used static approaches reveal that the proposed solution in overload situations provides increased flexibility in managing the trade-off between performance and data consistency

    Architecture for privacy-preserving brokerage of analytics using Multi Party Computation, Self Sovereign Identity and Blockchain

    Get PDF
    In our increasingly digitized world, the value of data is clear and proved, and many solutions and businesses have been developed to harness it. In particular, personal data (such as health-related data) is highly valuable, but it is also sensitive and could harm the owners if misused. In this context, data marketplaces could enhance the circulation of data and enable new businesses and solutions. However, in the case of personal data, marketplaces would necessarily have to comply with existing regulations, and they would also need to make users privacy protection a priority. In particular, privacy protection has been only partially accomplished by existing datamarkets, as they themselves can gather information about the individuals connected with the datasets they handle. In this thesis is presented an architecture proposal for KRAKEN, a new datamarket that provides privacy guarantees at every step in the data exchange and analytics pipeline. This is accomplished through the use of multi-party computation, blockchain and self-sovereign identity technologies. In addition to that, the thesis presents also a privacy analysis of the entire system. The analysis indicated that KRAKEN is safe from possible data disclosures to the buyers. On the other hand, some potential threats regarding the disclosure of data to the datamarket itself were identified, although posing a low-priority risk, given their rare chance of occurrence. Moreover the author of this thesis elaborated remarks on the decentralisation of the architecture and possible improvements to increase the security. These improvements are accompanied by the solutions identified in the paper that proposes the adoption of a trust measure for the MPC nodes. The work on the paper and the thesis contributed to the personal growth of the author, specifically improving his knowledge of cryptography by learning new schemes such as group signatures, zero knowledge proof of knowledge and multi-party computation. He improved his skills in writing academic papers and in working in a team of researchers leading a research area

    Trustworthy Knowledge Planes For Federated Distributed Systems

    Full text link
    In federated distributed systems, such as the Internet and the public cloud, the constituent systems can differ in their configuration and provisioning, resulting in significant impacts on the performance, robustness, and security of applications. Yet these systems lack support for distinguishing such characteristics, resulting in uninformed service selection and poor inter-operator coordination. This thesis presents the design and implementation of a trustworthy knowledge plane that can determine such characteristics about autonomous networks on the Internet. A knowledge plane collects the state of network devices and participants. Using this state, applications infer whether a network possesses some characteristic of interest. The knowledge plane uses attestation to attribute state descriptions to the principals that generated them, thereby making the results of inference more trustworthy. Trustworthy knowledge planes enable applications to establish stronger assumptions about their network operating environment, resulting in improved robustness and reduced deployment barriers. We have prototyped the knowledge plane and associated devices. Experience with deploying analyses over production networks demonstrate that knowledge planes impose low cost and can scale to support Internet-scale networks

    A critical review of cyber-physical security for building automation systems

    Full text link
    Modern Building Automation Systems (BASs), as the brain that enables the smartness of a smart building, often require increased connectivity both among system components as well as with outside entities, such as optimized automation via outsourced cloud analytics and increased building-grid integrations. However, increased connectivity and accessibility come with increased cyber security threats. BASs were historically developed as closed environments with limited cyber-security considerations. As a result, BASs in many buildings are vulnerable to cyber-attacks that may cause adverse consequences, such as occupant discomfort, excessive energy usage, and unexpected equipment downtime. Therefore, there is a strong need to advance the state-of-the-art in cyber-physical security for BASs and provide practical solutions for attack mitigation in buildings. However, an inclusive and systematic review of BAS vulnerabilities, potential cyber-attacks with impact assessment, detection & defense approaches, and cyber-secure resilient control strategies is currently lacking in the literature. This review paper fills the gap by providing a comprehensive up-to-date review of cyber-physical security for BASs at three levels in commercial buildings: management level, automation level, and field level. The general BASs vulnerabilities and protocol-specific vulnerabilities for the four dominant BAS protocols are reviewed, followed by a discussion on four attack targets and seven potential attack scenarios. The impact of cyber-attacks on BASs is summarized as signal corruption, signal delaying, and signal blocking. The typical cyber-attack detection and defense approaches are identified at the three levels. Cyber-secure resilient control strategies for BASs under attack are categorized into passive and active resilient control schemes. Open challenges and future opportunities are finally discussed.Comment: 38 pages, 7 figures, 6 tables, submitted to Annual Reviews in Contro

    Viiveiden vaikutus sähkömekaanisten heilahtelujen laajan alueen vaimennussäätöön

    Get PDF
    In this thesis the effects of delays on the wide-area damping control of electromechanical oscillations were studied. The research goals were two fold: to identify and define the delay sources in phasor measurement based (PMU) wide-area measurement systems for power systems, and to study the effects of delays on wide-area damping control using power system simulations as a research tool. The implementation the delays into a pre-existing power system simulation program as also a part of this work. The thesis shows and identifies the delays components and their properties in the wide-area measurement systems. It gives a survey on the reports of real delays observed in wide-area measurement systems worldwide. The simulation results show that delay has an impact on the damping control. Power system have a delay margin they are able to tolerate before turning unstable. Additionally, latency changes the properties of the electromechanical oscillations.Tässä diplomityössä tutkittiin viiveiden vaikutusta sähkömekaanisten heilahtelujen vaimennussäätöön. Työ oli karkeasti jaettavissa kahteen erilliseen osaan. Ensimmäinen osa oli voimajärjestelmien PMU-pohjaisten laajan alueen mittaus- ja ohjausjärjestelmien viivelähteiden löytäminen, tunnistaminen ja luokittelu. Toinen osa oli viiveiden vaikutusten tutkiminen laajan alueen heilahtelusäätöön käyttäen voimajärjestelmäsimulointia tutkimuksen työkaluna. Työn toteutus sisälsi viiveellistenmittauksien ja ohjauksien toteuttamisen valmiina olevaan simulaatio-ohjelmaan. Työ näyttää laajan alueen mittaus- ja ohjausjärjestelmien viivekomponentittien ominaisuudet ja vaikutuksen viiveketjuun sekä millaisia lukemia on raportoitu käytössä olevista järjestelmistä ympäri maailman. Työn viivesimulaatiot osoittavat, että viiveillä on merkitys sähkömekaanisten heilahtelujen vaimennussäätöön. Viiveellinen säätö muuttaa sähkömekaanisten heilahtelujen ominaisuuksia ja osoittaa, että voimajärjestelmillä on niille ominainen viiveen sietokyky
    corecore