155 research outputs found

    Information Nutritional Label and Word Embedding to Estimate Information Check-Worthiness

    Get PDF
    International audienceAutomatic fact-checking is an important challenge nowadays since anyone can write about anything and spread it in social media, no matter the information quality. In this paper, we revisit the information check-worthiness problem and propose a method that combines the "information nutritional label" features with POS-tags and word-embedding representations. To predict the information check-worthy claim, we train a machine learning model based on these features. We experiment and evaluate the proposed approach on the CheckThat! CLEF 2018 collection. The experimental result shows that our model that combines information nutritional label and word-embedding features outperforms the baselines and the official participants' runs of CheckThat! 2018 challenge

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    TB STIGMA – MEASUREMENT GUIDANCE

    Get PDF
    TB is the most deadly infectious disease in the world, and stigma continues to play a significant role in worsening the epidemic. Stigma and discrimination not only stop people from seeking care but also make it more difficult for those on treatment to continue, both of which make the disease more difficult to treat in the long-term and mean those infected are more likely to transmit the disease to those around them. TB Stigma – Measurement Guidance is a manual to help generate enough information about stigma issues to design and monitor and evaluate efforts to reduce TB stigma. It can help in planning TB stigma baseline measurements and monitoring trends to capture the outcomes of TB stigma reduction efforts. This manual is designed for health workers, professional or management staff, people who advocate for those with TB, and all who need to understand and respond to TB stigma

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available
    • 

    corecore