1,972 research outputs found

    The Dark Side(-Channel) of Mobile Devices: A Survey on Network Traffic Analysis

    Full text link
    In recent years, mobile devices (e.g., smartphones and tablets) have met an increasing commercial success and have become a fundamental element of the everyday life for billions of people all around the world. Mobile devices are used not only for traditional communication activities (e.g., voice calls and messages) but also for more advanced tasks made possible by an enormous amount of multi-purpose applications (e.g., finance, gaming, and shopping). As a result, those devices generate a significant network traffic (a consistent part of the overall Internet traffic). For this reason, the research community has been investigating security and privacy issues that are related to the network traffic generated by mobile devices, which could be analyzed to obtain information useful for a variety of goals (ranging from device security and network optimization, to fine-grained user profiling). In this paper, we review the works that contributed to the state of the art of network traffic analysis targeting mobile devices. In particular, we present a systematic classification of the works in the literature according to three criteria: (i) the goal of the analysis; (ii) the point where the network traffic is captured; and (iii) the targeted mobile platforms. In this survey, we consider points of capturing such as Wi-Fi Access Points, software simulation, and inside real mobile devices or emulators. For the surveyed works, we review and compare analysis techniques, validation methods, and achieved results. We also discuss possible countermeasures, challenges and possible directions for future research on mobile traffic analysis and other emerging domains (e.g., Internet of Things). We believe our survey will be a reference work for researchers and practitioners in this research field.Comment: 55 page

    Hidden and Uncontrolled - On the Emergence of Network Steganographic Threats

    Full text link
    Network steganography is the art of hiding secret information within innocent network transmissions. Recent findings indicate that novel malware is increasingly using network steganography. Similarly, other malicious activities can profit from network steganography, such as data leakage or the exchange of pedophile data. This paper provides an introduction to network steganography and highlights its potential application for harmful purposes. We discuss the issues related to countering network steganography in practice and provide an outlook on further research directions and problems.Comment: 11 page

    Options for Securing RTP Sessions

    Get PDF
    The Real-time Transport Protocol (RTP) is used in a large number of different application domains and environments. This heterogeneity implies that different security mechanisms are needed to provide services such as confidentiality, integrity, and source authentication of RTP and RTP Control Protocol (RTCP) packets suitable for the various environments. The range of solutions makes it difficult for RTP-based application developers to pick the most suitable mechanism. This document provides an overview of a number of security solutions for RTP and gives guidance for developers on how to choose the appropriate security mechanism

    Portable Tor Router: Easily Enabling Web Privacy for Consumers

    Full text link
    On-line privacy is of major public concern. Unfortunately, for the average consumer, there is no simple mechanism to browse the Internet privately on multiple devices. Most available Internet privacy mechanisms are either expensive, not readily available, untrusted, or simply provide trivial information masking. We propose that the simplest, most effective and inexpensive way of gaining privacy, without sacrificing unnecessary amounts of functionality and speed, is to mask the user's IP address while also encrypting all data. We hypothesized that the Tor protocol is aptly suited to address these needs. With this in mind we implemented a Tor router using a single board computer and the open-source Tor protocol code. We found that our proposed solution was able to meet five of our six goals soon after its implementation: cost effectiveness, immediacy of privacy, simplicity of use, ease of execution, and unimpaired functionality. Our final criterion of speed was sacrificed for greater privacy but it did not fall so low as to impair day-to-day functionality. With a total cost of roughly $100.00 USD and a speed cap of around 2 Megabits per second we were able to meet our goal of an affordable, convenient, and usable solution to increased on-line privacy for the average consumer.Comment: 6 pages, 5 figures, IEEE ICCE Conferenc

    An IoT analysis framework: An investigation of IoT smart cameras' vulnerabilities

    Get PDF

    Hidden in Plain Sight: Exploring Encrypted Channels in Android apps

    Full text link
    As privacy features in Android operating system improve, privacy-invasive apps may gradually shift their focus to non-standard and covert channels for leaking private user/device information. Such leaks also remain largely undetected by state-of-the-art privacy analysis tools, which are very effective in uncovering privacy exposures via regular HTTP and HTTPS channels. In this study, we design and implement, ThirdEye, to significantly extend the visibility of current privacy analysis tools, in terms of the exposures that happen across various non-standard and covert channels, i.e., via any protocol over TCP/UDP (beyond HTTP/S), and using multi-layer custom encryption over HTTP/S and non-HTTP protocols. Besides network exposures, we also consider covert channels via storage media that also leverage custom encryption layers. Using ThirdEye, we analyzed 12,598 top-apps in various categories from Androidrank, and found that 2887/12,598 (22.92%) apps used custom encryption/decryption for network transmission and storing content in shared device storage, and 2465/2887 (85.38%) of those apps sent device information (e.g., advertising ID, list of installed apps) over the network that can fingerprint users. Besides, 299 apps transmitted insecure encrypted content over HTTP/non-HTTP protocols; 22 apps that used authentication tokens over HTTPS, happen to expose them over insecure (albeit custom encrypted) HTTP/non-HTTP channels. We found non-standard and covert channels with multiple levels of obfuscation (e.g., encrypted data over HTTPS, encryption at nested levels), and the use of vulnerable keys and cryptographic algorithms. Our findings can provide valuable insights into the evolving field of non-standard and covert channels, and help spur new countermeasures against such privacy leakage and security issues.Comment: Extended version of an ACM CCS 2022 pape
    • …
    corecore