10 research outputs found

    Multi-Classifiers And Decision Fusion For Robust Statistical Pattern Recognition With Applications To Hyperspectral Classification

    Get PDF
    In this dissertation, a multi-classifier, decision fusion framework is proposed for robust classification of high dimensional data in small-sample-size conditions. Such datasets present two key challenges. (1) The high dimensional feature spaces compromise the classifiers’ generalization ability in that the classifier tends to overit decision boundaries to the training data. This phenomenon is commonly known as the Hughes phenomenon in the pattern classification community. (2) The small-sample-size of the training data results in ill-conditioned estimates of its statistics. Most classifiers rely on accurate estimation of these statistics for modeling training data and labeling test data, and hence ill-conditioned statistical estimates result in poorer classification performance. This dissertation tests the efficacy of the proposed algorithms to classify primarily remotely sensed hyperspectral data and secondarily diagnostic digital mammograms, since these applications naturally result in very high dimensional feature spaces and often do not have sufficiently large training datasets to support the dimensionality of the feature space. Conventional approaches, such as Stepwise LDA (S-LDA) are sub-optimal, in that they utilize a small subset of the rich spectral information provided by hyperspectral data for classification. In contrast, the approach proposed in this dissertation utilizes the entire high dimensional feature space for classification by identifying a suitable partition of this space, employing a bank-of-classifiers to perform “local” classification over this partition, and then merging these local decisions using an appropriate decision fusion mechanism. Adaptive classifier weight assignment and nonlinear pre-processing (in kernel induced spaces) are also proposed within this framework to improve its robustness over a wide range of fidelity conditions. Experimental results demonstrate that the proposed framework results in significant improvements in classification accuracies (as high as a 12% increase) over conventional approaches

    Multi-Classifiers And Decision Fusion For Robust Statistical Pattern Recognition With Applications To Hyperspectral Classification

    Get PDF
    In this dissertation, a multi-classifier, decision fusion framework is proposed for robust classification of high dimensional data in small-sample-size conditions. Such datasets present two key challenges. (1) The high dimensional feature spaces compromise the classifiers’ generalization ability in that the classifier tends to overit decision boundaries to the training data. This phenomenon is commonly known as the Hughes phenomenon in the pattern classification community. (2) The small-sample-size of the training data results in ill-conditioned estimates of its statistics. Most classifiers rely on accurate estimation of these statistics for modeling training data and labeling test data, and hence ill-conditioned statistical estimates result in poorer classification performance. This dissertation tests the efficacy of the proposed algorithms to classify primarily remotely sensed hyperspectral data and secondarily diagnostic digital mammograms, since these applications naturally result in very high dimensional feature spaces and often do not have sufficiently large training datasets to support the dimensionality of the feature space. Conventional approaches, such as Stepwise LDA (S-LDA) are sub-optimal, in that they utilize a small subset of the rich spectral information provided by hyperspectral data for classification. In contrast, the approach proposed in this dissertation utilizes the entire high dimensional feature space for classification by identifying a suitable partition of this space, employing a bank-of-classifiers to perform “local” classification over this partition, and then merging these local decisions using an appropriate decision fusion mechanism. Adaptive classifier weight assignment and nonlinear pre-processing (in kernel induced spaces) are also proposed within this framework to improve its robustness over a wide range of fidelity conditions. Experimental results demonstrate that the proposed framework results in significant improvements in classification accuracies (as high as a 12% increase) over conventional approaches

    Fusion of Spectral Reflectance and Derivative Information for Robust Hyperspectral Land Cover Classification

    Get PDF
    Developments in sensor technology have made high resolution hyperspectral remote sensing data available to the remote sensing analyst for ground cover classification and target recognition tasks. Further, with limited ground-truth data in many real-life operating scenarios, such hyperspectral classification systems often employ dimensionality reduction algorithms. In this thesis, the efficacy of spectral derivative features for hyperspectral analysis is studied. These studies are conducted within the context of both single and multiple classifier systems. Finally, a modification of existing classification techniques is proposed and tested on spectral reflectance and derivative features that adapts the classification systems to the characteristics of the dataset under consideration. Experimental results are reported with handheld, airborne and spaceborne hyperspectral data. Efficacy of the proposed approaches (using spectral derivatives and single or multiple classifiers) as quantified by the overall classification accuracy (expressed in percentage), is significantly greater than that of these systems when exploiting only reflectance information

    Feature extraction and classification for hyperspectral remote sensing images

    Get PDF
    Recent advances in sensor technology have led to an increased availability of hyperspectral remote sensing data at very high both spectral and spatial resolutions. Many techniques are developed to explore the spectral information and the spatial information of these data. In particular, feature extraction (FE) aimed at reducing the dimensionality of hyperspectral data while keeping as much spectral information as possible is one of methods to preserve the spectral information, while morphological profile analysis is the most popular methods used to explore the spatial information. Hyperspectral sensors collect information as a set of images represented by hundreds of spectral bands. While offering much richer spectral information than regular RGB and multispectral images, the high dimensional hyperspectal data creates also a challenge for traditional spectral data processing techniques. Conventional classification methods perform poorly on hyperspectral data due to the curse of dimensionality (i.e. the Hughes phenomenon: for a limited number of training samples, the classification accuracy decreases as the dimension increases). Classification techniques in pattern recognition typically assume that there are enough training samples available to obtain reasonably accurate class descriptions in quantitative form. However, the assumption that enough training samples are available to accurately estimate the class description is frequently not satisfied for hyperspectral remote sensing data classification, because the cost of collecting ground-truth of observed data can be considerably difficult and expensive. In contrast, techniques making accurate estimation by using only small training samples can save time and cost considerably. The small sample size problem therefore becomes a very important issue for hyperspectral image classification. Very high-resolution remotely sensed images from urban areas have recently become available. The classification of such images is challenging because urban areas often comprise a large number of different surface materials, and consequently the heterogeneity of urban images is relatively high. Moreover, different information classes can be made up of spectrally similar surface materials. Therefore, it is important to combine spectral and spatial information to improve the classification accuracy. In particular, morphological profile analysis is one of the most popular methods to explore the spatial information of the high resolution remote sensing data. When using morphological profiles (MPs) to explore the spatial information for the classification of hyperspectral data, one should consider three important issues. Firstly, classical morphological openings and closings degrade the object boundaries and deform the object shapes, while the morphological profile by reconstruction leads to some unexpected and undesirable results (e.g. over-reconstruction). Secondly, the generated MPs produce high-dimensional data, which may contain redundant information and create a new challenge for conventional classification methods, especially for the classifiers which are not robust to the Hughes phenomenon. Last but not least, linear features, which are used to construct MPs, lose too much spectral information when extracted from the original hyperspectral data. In order to overcome these problems and improve the classification results, we develop effective feature extraction algorithms and combine morphological features for the classification of hyperspectral remote sensing data. The contributions of this thesis are as follows. As the first contribution of this thesis, a novel semi-supervised local discriminant analysis (SELD) method is proposed for feature extraction in hyperspectral remote sensing imagery, with improved performance in both ill-posed and poor-posed conditions. The proposed method combines unsupervised methods (Local Linear Feature Extraction Methods (LLFE)) and supervised method (Linear Discriminant Analysis (LDA)) in a novel framework without any free parameters. The underlying idea is to design an optimal projection matrix, which preserves the local neighborhood information inferred from unlabeled samples, while simultaneously maximizing the class discrimination of the data inferred from the labeled samples. Our second contribution is the application of morphological profiles with partial reconstruction to explore the spatial information in hyperspectral remote sensing data from the urban areas. Classical morphological openings and closings degrade the object boundaries and deform the object shapes. Morphological openings and closings by reconstruction can avoid this problem, but this process leads to some undesirable effects. Objects expected to disappear at a certain scale remain present when using morphological openings and closings by reconstruction, which means that object size is often incorrectly represented. Morphological profiles with partial reconstruction improve upon both classical MPs and MPs with reconstruction. The shapes of objects are better preserved than classical MPs and the size information is preserved better than in reconstruction MPs. A novel semi-supervised feature extraction framework for dimension reduction of generated morphological profiles is the third contribution of this thesis. The morphological profiles (MPs) with different structuring elements and a range of increasing sizes of morphological operators produce high-dimensional data. These high-dimensional data may contain redundant information and create a new challenge for conventional classification methods, especially for the classifiers which are not robust to the Hughes phenomenon. To the best of our knowledge the use of semi-supervised feature extraction methods for the generated morphological profiles has not been investigated yet. The proposed generalized semi-supervised local discriminant analysis (GSELD) is an extension of SELD with a data-driven parameter. In our fourth contribution, we propose a fast iterative kernel principal component analysis (FIKPCA) to extract features from hyperspectral images. In many applications, linear FE methods, which depend on linear projection, can result in loss of nonlinear properties of the original data after reduction of dimensionality. Traditional nonlinear methods will cause some problems on storage resources and computational load. The proposed method is a kernel version of the Candid Covariance-Free Incremental Principal Component Analysis, which estimates the eigenvectors through iteration. Without performing eigen decomposition on the Gram matrix, our approach can reduce the space complexity and time complexity greatly. Our last contribution constructs MPs with partial reconstruction on nonlinear features. Traditional linear features, on which the morphological profiles usually are built, lose too much spectral information. Nonlinear features are more suitable to describe higher order complex and nonlinear distributions. In particular, kernel principal components are among the nonlinear features we used to built MPs with partial reconstruction, which led to significant improvement in terms of classification accuracies. The experimental analysis performed with the novel techniques developed in this thesis demonstrates an improvement in terms of accuracies in different fields of application when compared to other state of the art methods

    Analyse hiérarchique d'images multimodales

    Get PDF
    There is a growing interest in the development of adapted processing tools for multimodal images (several images acquired over the same scene with different characteristics). Allowing a more complete description of the scene, multimodal images are of interest in various image processing fields, but their optimal handling and exploitation raise several issues. This thesis extends hierarchical representations, a powerful tool for classical image analysis and processing, to multimodal images in order to better exploit the additional information brought by the multimodality and improve classical image processing techniques. %when applied to real applications. This thesis focuses on three different multimodalities frequently encountered in the remote sensing field. We first investigate the spectral-spatial information of hyperspectral images. Based on an adapted construction and processing of the hierarchical representation, we derive a segmentation which is optimal with respect to the spectral unmixing operation. We then focus on the temporal multimodality and sequences of hyperspectral images. Using the hierarchical representation of the frames in the sequence, we propose a new method to achieve object tracking and apply it to chemical gas plume tracking in thermal infrared hyperspectral video sequences. Finally, we study the sensorial multimodality, being images acquired with different sensors. Relying on the concept of braids of partitions, we propose a novel methodology of image segmentation, based on an energetic minimization framework.Il y a un intérêt grandissant pour le développement d’outils de traitements adaptés aux images multimodales (plusieurs images de la même scène acquises avec différentes caractéristiques). Permettant une représentation plus complète de la scène, ces images multimodales ont de l'intérêt dans plusieurs domaines du traitement d'images, mais les exploiter et les manipuler de manière optimale soulève plusieurs questions. Cette thèse étend les représentations hiérarchiques, outil puissant pour le traitement et l’analyse d’images classiques, aux images multimodales afin de mieux exploiter l’information additionnelle apportée par la multimodalité et améliorer les techniques classiques de traitement d’images. Cette thèse se concentre sur trois différentes multimodalités fréquemment rencontrées dans le domaine de la télédétection. Nous examinons premièrement l’information spectrale-spatiale des images hyperspectrales. Une construction et un traitement adaptés de la représentation hiérarchique nous permettent de produire une carte de segmentation de l'image optimale vis-à-vis de l'opération de démélange spectrale. Nous nous concentrons ensuite sur la multimodalité temporelle, traitant des séquences d’images hyperspectrales. En utilisant les représentations hiérarchiques des différentes images de la séquence, nous proposons une nouvelle méthode pour effectuer du suivi d’objet et l’appliquons au suivi de nuages de gaz chimique dans des séquences d’images hyperspectrales dans le domaine thermique infrarouge. Finalement, nous étudions la multimodalité sensorielle, c’est-à-dire les images acquises par différents capteurs. Nous appuyant sur le concept des tresses de partitions, nous proposons une nouvelle méthodologie de segmentation se basant sur un cadre de minimisation d’énergie

    Air Force Institute of Technology Research Report 2010

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physic

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF
    corecore