16,350 research outputs found

    Projective simulation for artificial intelligence

    Get PDF
    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.Comment: 22 pages, 18 figures. Close to published version, with footnotes retaine

    Self-directedness, integration and higher cognition

    Get PDF
    In this paper I discuss connections between self-directedness, integration and higher cognition. I present a model of self-directedness as a basis for approaching higher cognition from a situated cognition perspective. According to this model increases in sensorimotor complexity create pressure for integrative higher order control and learning processes for acquiring information about the context in which action occurs. This generates complex articulated abstractive information processing, which forms the major basis for higher cognition. I present evidence that indicates that the same integrative characteristics found in lower cognitive process such as motor adaptation are present in a range of higher cognitive process, including conceptual learning. This account helps explain situated cognition phenomena in humans because the integrative processes by which the brain adapts to control interaction are relatively agnostic concerning the source of the structure participating in the process. Thus, from the perspective of the motor control system using a tool is not fundamentally different to simply controlling an arm

    What is Computational Intelligence and where is it going?

    Get PDF
    What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed

    Method of increasing the information capacity of associative memory of oscillator neural networks using high-order synchronization effect

    Full text link
    Computational modelling of two- and three-oscillator schemes with thermally coupled VO2VO_2-switches is used to demonstrate a novel method of pattern storage and recognition in an impulse oscillator neural network (ONN) based on the high-order synchronization effect. The method ensures high information capacity of associative memory, i.e. a large number of synchronous states NsN_s. Each state in the system is characterized by the synchronization order determined as the ratio of harmonics number at the common synchronization frequency. The modelling demonstrates attainment of NsN_s of several orders both for a three-oscillator scheme NsN_s~650 and for a two-oscillator scheme NsN_s~260. A number of regularities are obtained, in particular, an optimal strength of oscillator coupling is revealed when NsN_s has a maximum. A general tendency toward information capacity decrease is shown when the coupling strength and switch inner noise amplitude increase. An algorithm of pattern storage and test vector recognition is suggested. It is also shown that the coordinate number in each vector should be one less than the switch number to reduce recognition ambiguity. The demonstrated method of associative memory realization is a general one and it may be applied in ONNs with various mechanisms and oscillator coupling topology.Comment: 18 pages, 8 figure
    • …
    corecore