150,173 research outputs found

    Possibilistic Information Flow Control for Workflow Management Systems

    Full text link
    In workflows and business processes, there are often security requirements on both the data, i.e. confidentiality and integrity, and the process, e.g. separation of duty. Graphical notations exist for specifying both workflows and associated security requirements. We present an approach for formally verifying that a workflow satisfies such security requirements. For this purpose, we define the semantics of a workflow as a state-event system and formalise security properties in a trace-based way, i.e. on an abstract level without depending on details of enforcement mechanisms such as Role-Based Access Control (RBAC). This formal model then allows us to build upon well-known verification techniques for information flow control. We describe how a compositional verification methodology for possibilistic information flow can be adapted to verify that a specification of a distributed workflow management system satisfies security requirements on both data and processes.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Consistency in Multi-Viewpoint Architectural Design of Enterprise Information Systems

    Get PDF
    Different stakeholders in the design of an enterprise information system have their own view on that design. To help produce a coherent design this paper presents a framework that aids in specifying relations between such views. To help produce a consistent design the framework also aids in specifying consistency rules that apply to the view relations and in checking the consistency according to those rules. The framework focuses on the higher levels of abstraction in a design, we refer to design at those levels of abstraction as architectural design. The highest level of abstraction that we consider is that of business process design and the lowest level is that of software component design. The contribution of our framework is that it provides a collection of basic concepts that is common to viewpoints in the area of enterprise information systems. These basic concepts aid in relating viewpoints by providing: (i) a common terminology that helps stakeholders to understand each others concepts; and (ii) a basis for defining re-usable consistency rules. In particular we define re-usable rules to check consistency between behavioural views that overlap or are a refinement of each other. We also present an architecture for a tool suite that supports our framework. We show that our framework can be applied, by performing a case study in which we specify the relations and consistency rules between the RM-ODP enterprise, computational and information viewpoints

    A formal foundation for ontology alignment interaction models

    No full text
    Ontology alignment foundations are hard to find in the literature. The abstract nature of the topic and the diverse means of practice makes it difficult to capture it in a universal formal foundation. We argue that such a lack of formality hinders further development and convergence of practices, and in particular, prevents us from achieving greater levels of automation. In this article we present a formal foundation for ontology alignment that is based on interaction models between heterogeneous agents on the Semantic Web. We use the mathematical notion of information flow in a distributed system to ground our three hypotheses of enabling semantic interoperability and we use a motivating example throughout the article: how to progressively align two ontologies of research quality assessment through meaning coordination. We conclude the article with the presentation---in an executable specification language---of such an ontology-alignment interaction model

    A Rigorous Approach to Relate Enterprise and Computational Viewpoints

    Get PDF
    Multiviewpoint approaches allow stakeholders to design a system from stakeholder-specific viewpoints. By this, a separation of concerns is achieved, which makes designs more manageable. However, to construct a consistent multiviewpoint design, the relations between viewpoints must be defined precisely, so that the consistency of designs from these viewpoints can be verified. The goal of this paper is to make the consistency rules between (a slightly adapted version of) the RM-ODP enterprise and computational viewpoints more precise and to make checking the consistency between these viewpoints practically applicable. To achieve this goal, we apply a generic framework for relating viewpoints that includes reusable consistency rules. We implemented the consistency rules in a tool to show their applicability

    Enhancing speed and scalability of the ParFlow simulation code

    Full text link
    Regional hydrology studies are often supported by high resolution simulations of subsurface flow that require expensive and extensive computations. Efficient usage of the latest high performance parallel computing systems becomes a necessity. The simulation software ParFlow has been demonstrated to meet this requirement and shown to have excellent solver scalability for up to 16,384 processes. In the present work we show that the code requires further enhancements in order to fully take advantage of current petascale machines. We identify ParFlow's way of parallelization of the computational mesh as a central bottleneck. We propose to reorganize this subsystem using fast mesh partition algorithms provided by the parallel adaptive mesh refinement library p4est. We realize this in a minimally invasive manner by modifying selected parts of the code to reinterpret the existing mesh data structures. We evaluate the scaling performance of the modified version of ParFlow, demonstrating good weak and strong scaling up to 458k cores of the Juqueen supercomputer, and test an example application at large scale.Comment: The final publication is available at link.springer.co
    • 

    corecore