54,489 research outputs found

    KnowText: Auto-generated Knowledge Graphs for custom domain applications

    Get PDF
    While industrial Knowledge Graphs enable information extraction from massive data volumes creating the backbone of the Semantic Web, the specialised, custom designed knowledge graphs focused on enterprise specific information are an emerging trend. We present “KnowText”, an application that performs automatic generation of custom Knowledge Graphs from unstructured text and enables fast information extraction based on graph visualisation and free text query methods designed for non-specialist users. An OWL ontology automatically extracted from text is linked to the knowledge graph and used as a knowledge base. A basic ontological schema is provided including 16 Classes and Data type Properties. The extracted facts and the OWL ontology can be downloaded and further refined. KnowText is designed for applications in business (CRM, HR, banking). Custom KG can serve for locally managing existing data, often stored as “sensitive” information or proprietary accounts, which are not on open web access. KnowText deploys a custom KG from a collection of text documents and enable fast information extraction based on its graph based visualisation and text based query methods

    Ontology Driven Web Extraction from Semi-structured and Unstructured Data for B2B Market Analysis

    No full text
    The Market Blended Insight project1 has the objective of improving the UK business to business marketing performance using the semantic web technologies. In this project, we are implementing an ontology driven web extraction and translation framework to supplement our backend triple store of UK companies, people and geographical information. It deals with both the semi-structured data and the unstructured text on the web, to annotate and then translate the extracted data according to the backend schema

    Detecting Family Resemblance: Automated Genre Classification.

    Get PDF
    This paper presents results in automated genre classification of digital documents in PDF format. It describes genre classification as an important ingredient in contextualising scientific data and in retrieving targetted material for improving research. The current paper compares the role of visual layout, stylistic features and language model features in clustering documents and presents results in retrieving five selected genres (Scientific Article, Thesis, Periodicals, Business Report, and Form) from a pool of materials populated with documents of the nineteen most popular genres found in our experimental data set.

    Optical tomography: Image improvement using mixed projection of parallel and fan beam modes

    Get PDF
    Mixed parallel and fan beam projection is a technique used to increase the quality images. This research focuses on enhancing the image quality in optical tomography. Image quality can be defined by measuring the Peak Signal to Noise Ratio (PSNR) and Normalized Mean Square Error (NMSE) parameters. The findings of this research prove that by combining parallel and fan beam projection, the image quality can be increased by more than 10%in terms of its PSNR value and more than 100% in terms of its NMSE value compared to a single parallel beam

    CloudScan - A configuration-free invoice analysis system using recurrent neural networks

    Get PDF
    We present CloudScan; an invoice analysis system that requires zero configuration or upfront annotation. In contrast to previous work, CloudScan does not rely on templates of invoice layout, instead it learns a single global model of invoices that naturally generalizes to unseen invoice layouts. The model is trained using data automatically extracted from end-user provided feedback. This automatic training data extraction removes the requirement for users to annotate the data precisely. We describe a recurrent neural network model that can capture long range context and compare it to a baseline logistic regression model corresponding to the current CloudScan production system. We train and evaluate the system on 8 important fields using a dataset of 326,471 invoices. The recurrent neural network and baseline model achieve 0.891 and 0.887 average F1 scores respectively on seen invoice layouts. For the harder task of unseen invoice layouts, the recurrent neural network model outperforms the baseline with 0.840 average F1 compared to 0.788.Comment: Presented at ICDAR 201
    corecore