778 research outputs found

    Benchmarking High Performance Architectures With Natural Language Processing Algorithms

    Get PDF
    Natural Language Processing algorithms are resource demanding, especially when tuning toinflective language like Polish is needed. The paper presents time and memory requirementsof part of speech tagging and clustering algorithms applied to two corpora of the Polishlanguage. The algorithms are benchmarked on three high performance platforms of differentarchitectures. Additionally sequential versions and OpenMP implementations of clusteringalgorithms were compared

    Representation and Processing of Composition, Variation and Approximation in Language Resources and Tools

    Get PDF
    In my habilitation dissertation, meant to validate my capacity of and maturity for directingresearch activities, I present a panorama of several topics in computational linguistics, linguisticsand computer science.Over the past decade, I was notably concerned with the phenomena of compositionalityand variability of linguistic objects. I illustrate the advantages of a compositional approachto the language in the domain of emotion detection and I explain how some linguistic objects,most prominently multi-word expressions, defy the compositionality principles. I demonstratethat the complex properties of MWEs, notably variability, are partially regular and partiallyidiosyncratic. This fact places the MWEs on the frontiers between different levels of linguisticprocessing, such as lexicon and syntax.I show the highly heterogeneous nature of MWEs by citing their two existing taxonomies.After an extensive state-of-the art study of MWE description and processing, I summarizeMultiflex, a formalism and a tool for lexical high-quality morphosyntactic description of MWUs.It uses a graph-based approach in which the inflection of a MWU is expressed in function ofthe morphology of its components, and of morphosyntactic transformation patterns. Due tounification the inflection paradigms are represented compactly. Orthographic, inflectional andsyntactic variants are treated within the same framework. The proposal is multilingual: it hasbeen tested on six European languages of three different origins (Germanic, Romance and Slavic),I believe that many others can also be successfully covered. Multiflex proves interoperable. Itadapts to different morphological language models, token boundary definitions, and underlyingmodules for the morphology of single words. It has been applied to the creation and enrichmentof linguistic resources, as well as to morphosyntactic analysis and generation. It can be integratedinto other NLP applications requiring the conflation of different surface realizations of the sameconcept.Another chapter of my activity concerns named entities, most of which are particular types ofMWEs. Their rich semantic load turned them into a hot topic in the NLP community, which isdocumented in my state-of-the art survey. I present the main assumptions, processes and resultsissued from large annotation tasks at two levels (for named entities and for coreference), parts ofthe National Corpus of Polish construction. I have also contributed to the development of bothrule-based and probabilistic named entity recognition tools, and to an automated enrichment ofProlexbase, a large multilingual database of proper names, from open sources.With respect to multi-word expressions, named entities and coreference mentions, I pay aspecial attention to nested structures. This problem sheds new light on the treatment of complexlinguistic units in NLP. When these units start being modeled as trees (or, more generally, asacyclic graphs) rather than as flat sequences of tokens, long-distance dependencies, discontinu-ities, overlapping and other frequent linguistic properties become easier to represent. This callsfor more complex processing methods which control larger contexts than what usually happensin sequential processing. Thus, both named entity recognition and coreference resolution comesvery close to parsing, and named entities or mentions with their nested structures are analogous3to multi-word expressions with embedded complements.My parallel activity concerns finite-state methods for natural language and XML processing.My main contribution in this field, co-authored with 2 colleagues, is the first full-fledged methodfor tree-to-language correction, and more precisely for correcting XML documents with respectto a DTD. We have also produced interesting results in incremental finite-state algorithmics,particularly relevant to data evolution contexts such as dynamic vocabularies or user updates.Multilingualism is the leitmotif of my research. I have applied my methods to several naturallanguages, most importantly to Polish, Serbian, English and French. I have been among theinitiators of a highly multilingual European scientific network dedicated to parsing and multi-word expressions. I have used multilingual linguistic data in experimental studies. I believethat it is particularly worthwhile to design NLP solutions taking declension-rich (e.g. Slavic)languages into account, since this leads to more universal solutions, at least as far as nominalconstructions (MWUs, NEs, mentions) are concerned. For instance, when Multiflex had beendeveloped with Polish in mind it could be applied as such to French, English, Serbian and Greek.Also, a French-Serbian collaboration led to substantial modifications in morphological modelingin Prolexbase in its early development stages. This allowed for its later application to Polishwith very few adaptations of the existing model. Other researchers also stress the advantages ofNLP studies on highly inflected languages since their morphology encodes much more syntacticinformation than is the case e.g. in English.In this dissertation I am also supposed to demonstrate my ability of playing an active rolein shaping the scientific landscape, on a local, national and international scale. I describemy: (i) various scientific collaborations and supervision activities, (ii) roles in over 10 regional,national and international projects, (iii) responsibilities in collective bodies such as program andorganizing committees of conferences and workshops, PhD juries, and the National UniversityCouncil (CNU), (iv) activity as an evaluator and a reviewer of European collaborative projects.The issues addressed in this dissertation open interesting scientific perspectives, in whicha special impact is put on links among various domains and communities. These perspectivesinclude: (i) integrating fine-grained language data into the linked open data, (ii) deep parsingof multi-word expressions, (iii) modeling multi-word expression identification in a treebank as atree-to-language correction problem, and (iv) a taxonomy and an experimental benchmark fortree-to-language correction approaches

    Inflection-Tolerant Ontology-Based Named Entity Recognition for Real-Time Applications

    Get PDF
    A growing number of applications users daily interact with have to operate in (near) real-time: chatbots, digital companions, knowledge work support systems - just to name a few. To perform the services desired by the user, these systems have to analyze user activity logs or explicit user input extremely fast. In particular, text content (e.g. in form of text snippets) needs to be processed in an information extraction task. Regarding the aforementioned temporal requirements, this has to be accomplished in just a few milliseconds, which limits the number of methods that can be applied. Practically, only very fast methods remain, which on the other hand deliver worse results than slower but more sophisticated Natural Language Processing (NLP) pipelines. In this paper, we investigate and propose methods for real-time capable Named Entity Recognition (NER). As a first improvement step, we address word variations induced by inflection, for example present in the German language. Our approach is ontology-based and makes use of several language information sources like Wiktionary. We evaluated it using the German Wikipedia (about 9.4B characters), for which the whole NER process took considerably less than an hour. Since precision and recall are higher than with comparably fast methods, we conclude that the quality gap between high speed methods and sophisticated NLP pipelines can be narrowed a bit more without losing real-time capable runtime performance

    Experiments on Lithuanian Term Extraction

    Get PDF
    Proceedings of the 18th Nordic Conference of Computational Linguistics NODALIDA 2011. Editors: Bolette Sandford Pedersen, Gunta Nešpore and Inguna Skadiņa. NEALT Proceedings Series, Vol. 11 (2011), 82-89. © 2011 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/16955

    Integrating deep and shallow natural language processing components : representations and hybrid architectures

    Get PDF
    We describe basic concepts and software architectures for the integration of shallow and deep (linguistics-based, semantics-oriented) natural language processing (NLP) components. The main goal of this novel, hybrid integration paradigm is improving robustness of deep processing. After an introduction to constraint-based natural language parsing, we give an overview of typical shallow processing tasks. We introduce XML standoff markup as an additional abstraction layer that eases integration of NLP components, and propose the use of XSLT as a standardized and efficient transformation language for online NLP integration. In the main part of the thesis, we describe our contributions to three hybrid architecture frameworks that make use of these fundamentals. SProUT is a shallow system that uses elements of deep constraint-based processing, namely type hierarchy and typed feature structures. WHITEBOARD is the first hybrid architecture to integrate not only part-of-speech tagging, but also named entity recognition and topological parsing, with deep parsing. Finally, we present Heart of Gold, a middleware architecture that generalizes WHITEBOARD into various dimensions such as configurability, multilinguality and flexible processing strategies. We describe various applications that have been implemented using the hybrid frameworks such as structured named entity recognition, information extraction, creative document authoring support, deep question analysis, as well as evaluations. In WHITEBOARD, e.g., it could be shown that shallow pre-processing increases both coverage and efficiency of deep parsing by a factor of more than two. Heart of Gold not only forms the basis for applications that utilize semanticsoriented natural language analysis, but also constitutes a complex research instrument for experimenting with novel processing strategies combining deep and shallow methods, and eases replication and comparability of results.Diese Arbeit beschreibt Grundlagen und Software-Architekturen für die Integration von flachen mit tiefen (linguistikbasierten und semantikorientierten) Verarbeitungskomponenten für natürliche Sprache. Das Hauptziel dieses neuartigen, hybriden Integrationparadigmas ist die Verbesserung der Robustheit der tiefen Verarbeitung. Nach einer Einführung in constraintbasierte Analyse natürlicher Sprache geben wir einen Überblick über typische Aufgaben flacher Sprachverarbeitungskomponenten. Wir führen XML Standoff-Markup als zusätzliche Abstraktionsebene ein, mit deren Hilfe sich Sprachverarbeitungskomponenten einfacher integrieren lassen. Ferner schlagen wir XSLT als standardisierte und effiziente Transformationssprache für die Online-Integration vor. Im Hauptteil der Arbeit stellen wir unsere Beiträge zu drei hybriden Architekturen vor, welche auf den beschriebenen Grundlagen aufbauen. SProUT ist ein flaches System, das Elemente tiefer Verarbeitung wie Typhierarchie und getypte Merkmalsstrukturen nutzt. WHITEBOARD ist das erste System, welches nicht nur Part-of-speech-Tagging, sondern auch Eigennamenerkennung und flaches topologisches Parsing mit tiefer Verarbeitung kombiniert. Schließlich wird Heart of Gold vorgestellt, eine Middleware-Architektur, welche WHITEBOARD hinsichtlich verschiedener Dimensionen wie Konfigurierbarkeit, Mehrsprachigkeit und Unterstützung flexibler Verarbeitungsstrategien generalisiert. Wir beschreiben verschiedene, mit Hilfe der hybriden Architekturen implementierte Anwendungen wie strukturierte Eigennamenerkennung, Informationsextraktion, Kreativitätsunterstützung bei der Dokumenterstellung, tiefe Frageanalyse, sowie Evaluationen. So konnte z.B. in WHITEBOARD gezeigt werden, dass durch flache Vorverarbeitung sowohl Abdeckung als auch Effizienz des tiefen Parsers mehr als verdoppelt werden. Heart of Gold bildet nicht nur Grundlage für semantikorientierte Sprachanwendungen, sondern stellt auch eine wissenschaftliche Experimentierplattform für weitere, neuartige Kombinationsstrategien dar, welche zudem die Replizierbarkeit und Vergleichbarkeit von Ergebnissen erleichtert
    corecore