40,551 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Reliability of Mobile Agents for Reliable Service Discovery Protocol in MANET

    Full text link
    Recently mobile agents are used to discover services in mobile ad-hoc network (MANET) where agents travel through the network, collecting and sometimes spreading the dynamically changing service information. But it is important to investigate how reliable the agents are for this application as the dependability issues(reliability and availability) of MANET are highly affected by its dynamic nature.The complexity of underlying MANET makes it hard to obtain the route reliability of the mobile agent systems (MAS); instead we estimate it using Monte Carlo simulation. Thus an algorithm for estimating the task route reliability of MAS (deployed for discovering services) is proposed, that takes into account the effect of node mobility in MANET. That mobility pattern of the nodes affects the MAS performance is also shown by considering different mobility models. Multipath propagation effect of radio signal is considered to decide link existence. Transient link errors are also considered. Finally we propose a metric to calculate the reliability of service discovery protocol and see how MAS performance affects the protocol reliability. The experimental results show the robustness of the proposed algorithm. Here the optimum value of network bandwidth (needed to support the agents) is calculated for our application. However the reliability of MAS is highly dependent on link failure probability

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area

    Enabling Disaster Resilient 4G Mobile Communication Networks

    Full text link
    The 4G Long Term Evolution (LTE) is the cellular technology expected to outperform the previous generations and to some extent revolutionize the experience of the users by taking advantage of the most advanced radio access techniques (i.e. OFDMA, SC-FDMA, MIMO). However, the strong dependencies between user equipments (UEs), base stations (eNBs) and the Evolved Packet Core (EPC) limit the flexibility, manageability and resiliency in such networks. In case the communication links between UEs-eNB or eNB-EPC are disrupted, UEs are in fact unable to communicate. In this article, we reshape the 4G mobile network to move towards more virtual and distributed architectures for improving disaster resilience, drastically reducing the dependency between UEs, eNBs and EPC. The contribution of this work is twofold. We firstly present the Flexible Management Entity (FME), a distributed entity which leverages on virtualized EPC functionalities in 4G cellular systems. Second, we introduce a simple and novel device-todevice (D2D) communication scheme allowing the UEs in physical proximity to communicate directly without resorting to the coordination with an eNB.Comment: Submitted to IEEE Communications Magazin
    • …
    corecore