160 research outputs found

    Acquisition and reconstruction of 3D objects for robotic machining

    Get PDF
    With the evolution of the techniques of acquisition of Three-Dimensional (3D) image it became possible to apply these in more and more areas, as well as to be used for research and hobbyists due to the appearance of low cost 3D scanners. Among the application of 3D acquisitions is the reconstruction of objects, which allows for example to redo or remodel an existing object that is no longer on the market. Another rise tech is industrial robot, that is highly present in the industry and can perform several tasks, even machining activities, and can be applied in more than one type of operation. The purpose of this work is to acquire a 3D scene with low-cost scanners and use this acquisition to create the tool path for roughing a workpiece, using an industrial robot for this machining task. For the acquisition, the Skanect software was used, which had satisfactory results for the work, and the exported file of the acquisition was worked on the MeshLab and Meshmixer software, which were used to obtain only the interest part for the milling process. With the defined work object, it was applied in Computer Aided Manufacturing (CAM) software, Fusion 360, to generate the tool path for thinning in G-code, which was converted by the RoboDK software to robot code, and this also allowed to make simulation of the machining with the desired robot. With the simulation taking place as expected, it was implemented in practice, performing the 3D acquisition machining, thus being able to verify the machining technique used. Furthermore, with the results of acquire, generation of toolpath and machining, was possible to validate the proposed solution and reach a conclusion of possible improvements for this project.Com a evolução das técnicas de aquisição de imagem 3D tornou-se possível aplicá-las em cada vez mais áreas, bem como serem utilizadas por pesquisadores e amadores devido ao surgimento de scanners 3D de baixo custo. Entre as aplicações de aquisições 3D está a reconstrução de objetos, o que permite, por exemplo, refazer ou remodelar um objeto existente que não está mais no mercado. Outra tecnologia em ascensão é o robô industrial, que está muito presente na indústria e pode realizar diversas tarefas, até mesmo atividades de fabrico, e ser aplicado em mais de um tipo de operação. O objetivo deste trabalho é adquirir uma cena 3D com scanners de baixo custo e utilizar esta aquisição para criar o caminho da ferramenta para o desbaste de uma peça, utilizando um robô industrial nesta tarefa de usinagem. Para a aquisição foi utilizado o software Skanect, que obteve resultados satisfatórios para o trabalho, e o arquivo exportado da aquisição foi trabalhado nos softwares MeshLab e Meshmixer, os quais foram utilizados para obter apenas a parte de interesse para o processo de fresagem. Com o objeto de trabalho defino, este foi aplicado em software CAM, Fusion 360, para gerar o caminho de ferramentas para o desbaste em G-code, o qual foi convertido pelo Software RoboDK para código de rôbo, e este também permitiu fazer simulação da maquinação com o rôbo pretendido. Com a simulação ocorrendo de acordo com o esperado, esta foi implementada em prática, realizando a maquinação da aquisição 3D, assim podendo verificar a técnica de maquinação utilizada. Além disso com os resultados de aquisição, geração de toolpath e maquinação, foi possível validar a solução proposta e chegar a uma conclusão de possíveis melhorias para este projeto

    Applications of Additive Manufacturing for Norwegian Oil and Gas Industries

    Get PDF
    The additive manufacturing or 3D printing (3DP) technologies have undergone exponential expansion, particularly in the previous couple of decades. Additive manufacturing technologies have paved the way for easy component manufacturing in large-scale and high-performance businesses. The introduction of desktop 3D printers has established 3DP as a reliable technique for generating prototypes and direct parts from CAD files. This technology is employed in an industrial setting for a range of purposes, including the invention and manufacture of customized and task-specific tools. This thesis looks at the benefits and drawbacks of deploying a 3D printer on an offshore facility to encourage on-site part manufacture, save operating costs, and reduce downtime. The thesis proposes ways for speeding and simplifying the creation of customized products. The approaches utilized were aimed to discover flaws and opportunities in offshore platforms' 3D printing processes. It also includes a comparative examination of production procedures, which will aid in decision-making. Furthermore, the technical structure of the proposed method would outline a path for developing prototype designs and tools to address identified difficulties. The proposed ideas and produced technologies could have a positive impact on the oil and gas industries' operations. The thesis also goes over the equipment needed for post-processing printed parts, as well as their availability on offshore platforms. The reliability issues associated with 3D printed parts are also addressed, which will improve RAMS analysis of printed parts

    Additive Manufacturing: Multi Material Processing and Part Quality Control

    Get PDF

    STEP-NC Enabled Cross-Technology Interoperability for CNC Machining

    Get PDF

    Towards a Framework for Smart Manufacturing adoption in Small and Medium-sized Enterprises

    Get PDF
    Smart Manufacturing (SM) paradigm adoption can scale production with demand without compromising on the time for order fulfillment. A smart manufacturing system (SMS) is vertically and horizontally connected, and thus it can minimize the chances of miscommunication. Employees in an SME are aware of the operational requirements and their responsibilities. The machine schedules are prepared based on the tasks a machine must perform. Predictive maintenance reduces the downtime of machines. Design software optimizes the product design. Production feasibility is checked with the help of simulation. The concepts of product life cycle management are considered for waste reduction. Employee safety, and ergonomics, identifying new business opportunities and markets, focus on employee education and skill enhancement are some of the other advantages of SM paradigm adoption. This dissertation develops an SM paradigm adoption framework for manufacturing SMEs by employing the instrumental research approach. The first step in the framework identified the technical aspects of SM, and this step was followed by identifying the research gaps in the suggested methods (in literature) and managerial aspects for adopting SM paradigm. The technical and the managerial aspects were integrated into a toolkit for manufacturing SMEs. This toolkit contains seven modular toolboxes that can be installed in five levels, depending on an SME’s readiness towards SM. The framework proposed in this dissertation focuses on how an SME’s readiness can be assessed and based on its present readiness what tools and practices the SMEs need to have to realize their tailored vision of SM. The framework was validated with the help of two SMEs cases that have recently adopted SM practices

    Acta Polytechnica Hungarica 2021

    Get PDF

    Integrated material practice in free-form timber structures

    Get PDF
    Integrated material practice in free-form timber structures is a practice-led research project at CITA (Centre for IT and Architecture) that develops a digitally-augmented material practice around glue-laminated timber. The project is part of the InnoChain ETN and has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642877. The advent of digital tools and computation has shifted the focus of many material practices from the shaping of material to the shaping of information. The ability to process large amounts of data quickly has made computation commonplace in the design and manufacture of buildings, especially in iterative digital design workflows. The simulation of material performance and the shift from models as representational tools to functional ones has opened up new methods of working between digital model and physical material. Wood has gained a new relevance in contemporary construction because it is sustainable, renewable, and stores carbon. In light of the climate crisis and concerns about overpopulation, and coupled with developments in adhesives and process technology, it is returning to the forefront of construction. However, as a grown and heterogeneous material, its properties and behaviours nevertheless present barriers to its utilization in architecturally demanding areas. Similarly, the integration of the properties, material behaviours, and production constraints of glue-laminated timber (glulam) assemblies into early-stage architectural design workflows remains a challenging specialist and inter-disciplinary affair. Drawing on a partnership with Dsearch – the digital research network at White Arkitekter in Sweden – and Blumer Lehmann AG – a leading Swiss timber contractor – this research examines the design and fabrication of glue-laminated timber structures and seeks a means to link industrial timber fabrication with early-stage architectural design through the application of computational modelling, design, and an interrogation of established timber production processes. A particular focus is placed on large-scale free-form glulam structures due to their high performance demands and the challenge of exploiting the bending properties of timber. By proposing a computationally-augmented material practice in which design intent is informed by material and fabrication constraints, the research aims to discover new potentials in timber architecture. The central figure in the research is the glulam blank - the glue-laminated near-net shape of large-scale timber components. The design space that the blank occupies - between sawn, graded lumber and the finished architectural component - holds the potential to yield new types of timber components and new structural morphologies. Engaging with this space therefore requires new interfaces for design modelling and production that take into account the affordances of timber and timber processing. The contribution of this research is a framework for a material practice that integrates processes of computational modelling, architectural design, and timber fabrication and acts as a broker between domains of architectural design and industrial timber production. The research identifies four different notions of feedback that allow this material practice to form

    Redefining Process: An Exploration of Digital Design, Fabrication, and Assembly through the Creation of a Bicycle Station

    Get PDF
    Digital technology has allowed new territories, unthinkable decades ago to be explored. It has not only allowed architects to dream up and generate complex fluid designs through the use of 3D modeling software, but it has also allowed architects to give physical form to the digital realm through techniques in digital fabrication. This thesis investigates a process of digital design, fabrication, and assembly through the exploration of carbon fiber as a building material and how it can be used to give physical form to the digital realm. This process is tested through the design of a bicycle station that is to be located in two different urban conditions in Washington, D.C. The first explores prefabricated carbon fiber surface and how it can be inserted into existing architecture. The second explores small-scale and large-scale prefabricated carbon fiber surface and how it can be fabricated and applied to new architecture

    Three Fundamental Trade-offs in Expanding Sustainable Distributions of Manufacturing

    Get PDF
    The background of the research is the trend towards more inclusive manufacturing. This includes all levels of technologies to enable more diverse geographic and demographic distributions of manufacturing, which can improve ecological and social sustainability. Expanding distributions of manufacturing is of interest to governments, companies, communities and individuals. Interest among government and companies relates to manufacturing being re-shored and redistributed. Interest among communities and individuals is in people having more involvement in the production of what they consume: i.e. prosumption. Expansion of geographic distributions has potential to increase ecological sustainability, for example, by reducing long-distance transportation. Expansion of demographic distributions has potential to increase social sustainability, for example, by increasing the diversity of people involved in manufacturing. The dissertation addresses three research gaps concerned with sustainable distributed manufacturing. In particular, the fundamental challenges of three manufacturing trade-offs are addressed as follows: product originality, product complexity, and product unsustainability versus sustainable distributed manufacturing. There are three main findings from the research. First, technological advances enable expansion of sustainable distributed manufacturing of original products, if the products are small simple original products rather than large complicated original products. Second, technological advances enable sustainable distributed manufacturing of products that are more complex than could otherwise be made far from manufacturing infrastructures, but which nonetheless are not the most complex products. Third, technological advances enable more sustainable distributed production of products with unsustainable features, if technological advances are applied also to some existing distributions of manufacturing. Consideration of these three main findings and three further findings, suggests two complementary strategies for expanding sustainable manufacturing distributions: trade-off reduction and trade-off avoidance. Overall, the research is novel through its inclusion of diverse technologies and distributions of manufacturing in order to determine their relative potential to improve the production of physical goods at more diverse locations by more diverse people
    • …
    corecore