596 research outputs found

    From Heisenberg to Goedel via Chaitin

    Full text link
    In 1927 Heisenberg discovered that the ``more precisely the position is determined, the less precisely the momentum is known in this instant, and vice versa''. Four years later G\"odel showed that a finitely specified, consistent formal system which is large enough to include arithmetic is incomplete. As both results express some kind of impossibility it is natural to ask whether there is any relation between them, and, indeed, this question has been repeatedly asked for a long time. The main interest seems to have been in possible implications of incompleteness to physics. In this note we will take interest in the {\it converse} implication and will offer a positive answer to the question: Does uncertainty imply incompleteness? We will show that algorithmic randomness is equivalent to a ``formal uncertainty principle'' which implies Chaitin's information-theoretic incompleteness. We also show that the derived uncertainty relation, for many computers, is physical. In fact, the formal uncertainty principle applies to {\it all} systems governed by the wave equation, not just quantum waves. This fact supports the conjecture that uncertainty implies randomness not only in mathematics, but also in physics.Comment: Small change

    Is Complexity a Source of Incompleteness?

    Get PDF
    In this paper we prove Chaitin's ``heuristic principle'', {\it the theorems of a finitely-specified theory cannot be significantly more complex than the theory itself}, for an appropriate measure of complexity. We show that the measure is invariant under the change of the G\"odel numbering. For this measure, the theorems of a finitely-specified, sound, consistent theory strong enough to formalize arithmetic which is arithmetically sound (like Zermelo-Fraenkel set theory with choice or Peano Arithmetic) have bounded complexity, hence every sentence of the theory which is significantly more complex than the theory is unprovable. Previous results showing that incompleteness is not accidental, but ubiquitous are here reinforced in probabilistic terms: the probability that a true sentence of length nn is provable in the theory tends to zero when nn tends to infinity, while the probability that a sentence of length nn is true is strictly positive.Comment: 15 pages, improved versio

    What Do Paraconsistent, Undecidable, Random, Computable and Incomplete mean? A Review of Godel's Way: Exploits into an undecidable world by Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160p (2012) (review revised 2019)

    Get PDF
    In ‘Godel’s Way’ three eminent scientists discuss issues such as undecidability, incompleteness, randomness, computability and paraconsistency. I approach these issues from the Wittgensteinian viewpoint that there are two basic issues which have completely different solutions. There are the scientific or empirical issues, which are facts about the world that need to be investigated observationally and philosophical issues as to how language can be used intelligibly (which include certain questions in mathematics and logic), which need to be decided by looking at how we actually use words in particular contexts. When we get clear about which language game we are playing, these topics are seen to be ordinary scientific and mathematical questions like any others. Wittgenstein’s insights have seldom been equaled and never surpassed and are as pertinent today as they were 80 years ago when he dictated the Blue and Brown Books. In spite of its failings—really a series of notes rather than a finished book—this is a unique source of the work of these three famous scholars who have been working at the bleeding edges of physics, math and philosophy for over half a century. Da Costa and Doria are cited by Wolpert (see below or my articles on Wolpert and my review of Yanofsky’s ‘The Outer Limits of Reason’) since they wrote on universal computation, and among his many accomplishments, Da Costa is a pioneer in paraconsistency. Those wishing a comprehensive up to date framework for human behavior from the modern two systems view may consult my book ‘The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle’ 2nd ed (2019). Those interested in more of my writings may see ‘Talking Monkeys--Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet--Articles and Reviews 2006-2019 3rd ed (2019), The Logical Structure of Human Behavior (2019), and Suicidal Utopian Delusions in the 21st Century 4th ed (2019

    Kolmogorov Complexity in perspective. Part I: Information Theory and Randomnes

    Get PDF
    We survey diverse approaches to the notion of information: from Shannon entropy to Kolmogorov complexity. Two of the main applications of Kolmogorov complexity are presented: randomness and classification. The survey is divided in two parts in the same volume. Part I is dedicated to information theory and the mathematical formalization of randomness based on Kolmogorov complexity. This last application goes back to the 60's and 70's with the work of Martin-L\"of, Schnorr, Chaitin, Levin, and has gained new impetus in the last years.Comment: 40 page
    • …
    corecore