2,062 research outputs found

    The Olympic medals ranks, lexicographic ordering and numerical infinities

    Get PDF
    Several ways used to rank countries with respect to medals won during Olympic Games are discussed. In particular, it is shown that the unofficial rank used by the Olympic Committee is the only rank that does not allow one to use a numerical counter for ranking – this rank uses the lexicographic ordering to rank countries: one gold medal is more precious than any number of silver medals and one silver medal is more precious than any number of bronze medals. How can we quantify what do these words, more precious, mean? Can we introduce a counter that for any possible number of medals would allow us to compute a numerical rank of a country using the number of gold, silver, and bronze medals in such a way that the higher resulting number would put the country in the higher position in the rank? Here we show that it is impossible to solve this problem using the positional numeral system with any finite base. Then we demonstrate that this problem can be easily solved by applying numerical computations with recently developed actual infinite numbers. These computations can be done on a new kind of a computer – the recently patented Infinity Computer. Its working software prototype is described briefly and examples of computations are given. It is shown that the new way of counting can be used in all situations where the lexicographic ordering is required

    Introduction to the Special Issue: The AgentLink III Technical Forums

    No full text
    This article introduces the special issue of ACM Transactions on Autonomous and Adaptive Systems devoted to research papers arising from the three Technical Forum Group meetings held in 2004 and 2005 that were organized and sponsored by the European FP6 Coordination Action AgentLink III

    Superprocesses as models for information dissemination in the Future Internet

    Full text link
    Future Internet will be composed by a tremendous number of potentially interconnected people and devices, offering a variety of services, applications and communication opportunities. In particular, short-range wireless communications, which are available on almost all portable devices, will enable the formation of the largest cloud of interconnected, smart computing devices mankind has ever dreamed about: the Proximate Internet. In this paper, we consider superprocesses, more specifically super Brownian motion, as a suitable mathematical model to analyse a basic problem of information dissemination arising in the context of Proximate Internet. The proposed model provides a promising analytical framework to both study theoretical properties related to the information dissemination process and to devise efficient and reliable simulation schemes for very large systems

    The Influence of Outsourcing and Information and Communication Technology on Virtualization of the Company

    Get PDF
    In the article we investigate the field of virtual organizations, which in the definition of many authors consists of two components: outsourcing and information and communication technology. In the study we have tried to determine which of the two, in the opinion of employees working in the area of Slovene tourism, contributes to a greater degree to virtualization of the company. We determine that outsourcing influences the virtualization of the company more strongly than does information and communication technology, since it enables the company to acquire new knowledge and know-how and increase its competitiveness in the marketplace.virtual organization, outsourcing, information and communication technology

    Development of fractal-fuzzy evaluation methodology and its application for seismic hazards assessment using microseismic monitoring in coal mining

    Get PDF
    Seismic hazards have become one of the common risks in underground coal mining and their assessment is an important component of the safety management. In this study, a methodology, involving nine fractal dimension-based indices and a fuzzy comprehensive evaluation model, has been developed based on the processed real time microseismic data from an underground coal mine, which allows for a better and quantitative evaluation of the likelihood for the seismic hazards. In the fuzzy model, the membership function was built using a Gaussian shape and the weight of each index was determined using the performance metric F score derived from the confusion matrix. The assessment results were initially characterised as a probability belonging to each of four risk levels (none, weak, moderate and strong). The comprehensive result was then evaluated by integrating the maximum membership degree principle (MMDP) and the variable fuzzy pattern recognition (VFPR). The model parameters of this methodology were first calibrated using historical microseismic data over a period of seven months at Coal Mine Velenje in Slovenia, and then applied to analyse more recent microseismic monitoring data. The results indicate that the calibrated model was able to assess seismic hazards in the mine
    • 

    corecore