772 research outputs found

    Modeling and behavior of the simulation of electric propagation during deep brain stimulation

    Get PDF
    Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease. In the literature, there are a wide variety of mathematical and computational models to describe electric propagation during DBS; however unfortunately, there is no clarity about the reasons that justify the use of a specific model. In this work, we present a detailed mathematical formulation of the DBS electric propagation that supports the use of a model based on the Laplace Equation. Moreover, we performed DBS simulations for several geometrical models of the brain in order to determine whether geometry size, shape and ground location influence electric stimulation prediction by using the Finite Element Method (FEM). Theoretical and experimental analysis show, firstly, that under the correct assumptions, the Laplace equation is a suitable alternative to describe the electric propagation, and secondly, that geometrical structure, size and grounding of the head volume affect the magnitude of the electric potential, particularly for monopolar stimulation. Results show that, for monopolar stimulation, basic and more realistic models can differ more than 2900%

    Numerical modelling in transcranial magnetic stimulation

    Get PDF
    Tese de doutoramento, Engenharia Biomédica e Biofísica, Universidade de Lisboa, Faculdade de Ciências, 2009In this work powerful numerical methods were used to study several problems that still remain unsolved in TMS.The first problem that was studied is related to the difficulties that arise when stimulating sub-cortical deep regions with TMS, due to the fact that the induced field rapidly decays and loses focality with depth. This study's approach to overcome this difficulty was to combine ferromagnetic cores with a coil designed to induce an electric field that decays slowly. The efficacy of this approach was tested by using the FEM to calculate the field induced by this coil / core design in a realistically shaped head model. The results show that the core might make this coil even more suited for deep brain stimulation.The second problem that was tackled is related to the lack of knowledge about the dominant mechanisms through which the induced electric field excites neurons in TMS. In this work the electric field along lines, representing trajectories of actual cortical neurons, was calculated using the FEM. The neurons were embedded in a realistically shaped sulcus model, with a figure-8 coil placed above the model. The electric field was then incorporated into the cable equation. The solution of the latter allowed the determination of the site and threshold of activation of the neurons. The results highlight the importance of axonal terminations and bends and tissue heterogeneities on stimulation of neurons.The third problem that was studied concerns TMS of small animals and the lack of knowledge about the optimal geometry, size and orientation of the used coils. This was studied by using the FEM to calculate the electric field induced in a realistically shaped mouse model by several commercially available coils. The results showed that the smaller coils induced fields with higher magnitude, better focality, and smaller decay than the bigger coils.These results highlight the importance of numerical modelling in TMS, either in coil design, determination of basic neurophysiologic mechanisms or optimization of experimental procedures

    Electrochemical Safety Studies of Cochlear Implant Electrodes Using the Finite Element Method

    Get PDF
    Cochlear implants, amongst other neural prostheses, utilise platinum electrodes as an interface between the synthetic implant and the biological tissue environment. If excessive electrical charge is injected via these electrodes, injury to the tissue may result. Empirically derived stimulation limits have been defined to prevent tissue damage, however the injurious mechanisms are still unclear. Evidence suggests that the non-uniform distribution of charge on electrodes influences the electrochemical generation of toxic by-products. However, in vivo and in vitro techniques are limited in their ability to systematically explore the factors and mechanisms that contribute to stimulation-induced tissue injury. To this end, an in silico approach was used to develop a time-domain model of cochlear implant stimulation electrodes. A constant phase angle impedance was used to model the reversible processes on the electrode surface, and Butler-Volmer reaction kinetics were used to define the behaviour of the water window irreversible electrochemical reactions. The resulting model provided time-domain responses of the current density distributions, and net charge consumed by the hydrolysis reactions. This model was then used to perform systematic evaluations of various electrode geometries and stimulation parameters. The modelling results showed the current associated with irreversible reactions was non-uniform and tended towards the periphery of the electrode. A comparison of electrode geometries revealed interactions between electrode size, shape and recess depth. Stimulation mode, electrode position, and electrolyte conductivity were found to impact the shape of the electric field and the extent of irreversible reactions. This emphasised the influence of the physiological environment on the stimulation safety. In vitro experiments were conducted to validate the model. The implications of the results described in this thesis can be used to inform the design of safer electrodes

    High Fidelity Bioelectric Modelling of the Implanted Cochlea

    Get PDF
    Cochlear implants are medical devices that can restore sound perception in individuals with sensorineural hearing loss (SHL). Since their inception, improvements in performance have largely been driven by advances in signal processing, but progress has plateaued for almost a decade. This suggests that there is a bottleneck at the electrode-tissue interface, which is responsible for enacting the biophysical changes that govern neuronal recruitment. Understanding this interface is difficult because the cochlea is small, intricate, and difficult to access. As such, researchers have turned to modelling techniques to provide new insights. The state-of-the-art involves calculating the electric field using a volume conduction model of the implanted cochlea and coupling it with a neural excitation model to predict the response. However, many models are unable to predict patient outcomes consistently. This thesis aims to improve the reliability of these models by creating high fidelity reconstructions of the inner ear and critically assessing the validity of the underlying and hitherto untested assumptions. Regarding boundary conditions, the evidence suggests that the unmodelled monopolar return path should be accounted for, perhaps by applying a voltage offset at a boundary surface. Regarding vasculature, the models show that large modiolar vessels like the vein of the scala tympani have a strong local effect near the stimulating electrode. Finally, it appears that the oft-cited quasi-static assumption is not valid due to the high permittivity of neural tissue. It is hoped that the study improves the trustworthiness of all bioelectric models of the cochlea, either by validating the claims of existing models, or by prompting improvements in future work. Developing our understanding of the underlying physics will pave the way for advancing future electrode array designs as well as patient-specific simulations, ultimately improving the quality of life for those with SHL

    Brain and Human Body Modeling

    Get PDF
    This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields

    Personalized computational models of deep brain stimulation

    Get PDF
    University of Minnesota Ph.D. dissertation. December 2016. Major: Biomedical Engineering. Advisor: Matthew Johnson. 1 computer file (PDF); xii, 138 pages.Deep brain stimulation (DBS) therapy is used for managing symptoms associated with a growing number of neurological disorders. One of the primary challenges with delivering this therapy, however, continues to be accurate neurosurgical targeting of the DBS lead electrodes and post-operative programming of the stimulation settings. Two approaches for addressing targeting have been advanced in recent years. These include novel DBS lead designs with more electrodes and computational models that can predict cellular modulation during DBS. Here, we developed a personalized computational modeling framework to (1) thoroughly investigate the electrode design parameter space for current and future DBS array designs, (2) generate and evaluate machine learning feature sets for semi-automated programming of DBS arrays, (3) study the influence of model parameters in predicting behavioral and electrophysiological outcomes of DBS in a preclinical animal model of Parkinson’s disease, and (4) evaluate feasibility of a novel endovascular targeting approach to delivering DBS therapy in humans. These studies show how independent current controlled stimulation with advanced machine learning algorithms can negate the need for highly dense electrode arrays to shift, steer, and sculpt regions of modulation within the brain. Additionally, these studies show that while advanced and personalized computational models of DBS can predict many of the behavioral and electrophysiological outcomes of DBS, there are remaining inconsistencies that suggest there are additional physiological mechanisms of DBS that are not yet well understood. Finally, the results show how computational models can be beneficial for prospective development of novel approaches to neuromodulation prior to large-scale preclinical and clinical studies

    Brain and Human Body Modeling

    Get PDF
    This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields

    Impedance Spectroscopy

    Get PDF
    This book covers new advances in the field of impedance spectroscopy including fundamentals, methods and applications. It releases selected extended and peer reviewed scientific contributions from the International Workshop on Impedance Spectroscopy (IWIS 2017) focussing on detailed information about recent scientific research results in electrochemistry and battery research, bioimpedance measurement, sensors, system design, signal processing

    DICOM for EIT

    Get PDF
    With EIT starting to be used in routine clinical practice [1], it important that the clinically relevant information is portable between hospital data management systems. DICOM formats are widely used clinically and cover many imaging modalities, though not specifically EIT. We describe how existing DICOM specifications, can be repurposed as an interim solution, and basis from which a consensus EIT DICOM ‘Supplement’ (an extension to the standard) can be writte
    corecore