104 research outputs found

    On the choice of thickness of the cement mantle in cemented hip arthroplasty

    Get PDF
    Recommendations for the optimal thickness of the cement mantle in cemented hip arthroplasty are outlined based on the results obtained with the finite element method. The investigations show that distal femur cement thickness higher than 2 mm positively affects mechanical behaviour of the cement mantle and can be useful in reducing stress-strain levels in the distal part of the femur what leads to prevention of development of a stress-shielding effect. The results of the study can contribute to the success of long-term implants

    Micro-CT and Micro-FE analysis of stress transfer of femoral stems

    Get PDF

    Evaluation of the initial fixation, stress distribution and revision of short stem hip arthroplasty

    Get PDF

    Development of procedures for the design, optimization and manufacturing of customized orthopaedic and trauma implants: Geometrical/anatomical modelling from 3D medical imaging

    Get PDF
    Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)The introduction of imaging techniques in 1970 is one of the most relevant historical milestones in modern medicine. Medical imaging techniques have dramatically changed our understanding of the Human anatomy and physiology. The ability to non-invasively extract visual information allowed, not only the three-dimensional representation of the internal organs and musculo-skeletal system, but also the simulation of surgical procedures, the execution of computer aided surgeries, the development of more accurate biomechanical models, the development of custom-made implants, among others. The combination of the most advanced medical imaging systems with the most advanced CAD and CAM techniques, may allow the development of custom-made implants that meet patient-speci c traits. The geometrical and functional optimization of these devices may increase implant life-expectancy, especially in patients with marked deviations from the anatomical standards. In the implant customization protocol from medical image data, there are several steps that need to be followed in a sequential way, namely: Medical Image Processing and Recovering; Accurate Image Segmentation and 3D Surface Model Generation; Geometrical Customization based on CAD and CAE techniques; FEA Optimization of the Implant Geometry; and Manufacturing using CAD-CAM Technologies. This work aims to develop the necessary procedures for custom implant development from medical image data. This includes the extraction of highly accurate three-dimensional representation of the musculo-skeletal system from the Computed Tomography imaging, and the development of customized implants, given the speci c requirements of the target anatomy, and the applicable best practices found in the literature. A two-step segmentation protocol is proposed. In the rst step the region of interest is pre-segmented in order to obtain a good approximation to the desired geometry. Next, a fully automatic segmentation re nement is applied to obtain a more accurate representation of the target domain. The re nement step is composed by several sub-steps, more precisely, the recovery of the original image, considering the limiting resolution of the imaging system; image cropping; image interpolation; and segmentation re nement over the up-sampled domain. Highly accurate segmentations of the target domain were obtained with the proposed pipeline. The limiting factor to the accurate description of the domain accuracy is the image acquisition process, rather the following image processing, segmentation and surface meshing steps. The new segmentation pipeline was used in the development of three tailor-made implants, namely, a tibial nailing system, a mandibular implant, and a Total Hip Replacement system. Implants optimization is carried with Finite Element Analysis, considering the critical loading conditions that may be applied to each implant in working conditions. The new tibial nailing system is able of sustaining critical loads without implant failure; the new mandibular endoprosthesis that allows the recovery of the natural stress and strain elds observed in intact mandibles; and the Total Hip Replacement system that showed comparable strain shielding levels as commercially available stems. In summary, in the present thesis the necessary procedures for custom implant design are investigated, and new algorithms proposed. The guidelines for the characterization of the image acquisition, image processing, image segmentation and 3D reconstruction are presented and discussed. This new image processing pipeline is applied and validated in the development of the three abovementioned customized implants, for di erent medical applications and that satisfy speci c anatomical needs.Um dos principais marcos da história moderna da medicina e a introdução da imagem médica, em meados da década de 1970. As tecnologias de imagem permitiram aumentar e potenciar o nosso conhecimento acerca da anatomia e fisiologia do corpo Humano. A capacidade de obter informação imagiológica de forma não invasiva permitiu, não são a representação tridimensional de órgãos e do sistema músculo-esquelético, mas também a simulação de procedimentos cirúrgicos, a realização de cirurgias assistidas por computador, a criação de modelos biomecânicos mais realistas, a criação de implantes personalizados, entre outros. A conjugação dos sistemas mais avançados de imagem medica com as técnicas mais avançadas de modelação e maquinagem, pode permitir o desenvolvimento de implantes personalizados mais otimizados, que vão de encontro as especificidades de cada paciente. Por sua vez, a otimização geométrica e biomecânica destes dispositivos pode permitir, quer o aumento da sua longevidade, quer o tratamento de pessoas com estruturas anatómicas que se afastam dos padrões normais. O processo de modelação de implantes a partir da imagem medica passa por um conjunto de procedimentos a adotar, sequencialmente, ate ao produto final, a saber: Processamento e Recuperação de Imagem; Segmentação de Imagem e Reconstrução tridimensional da Região de Interesse; Modelação Geométrica do Implante; Simulação Numérica para a Otimização da Geometria; a Maquinagem do Implante. Este trabalho visa o desenvolvimento dos procedimentos necessários para a criação de implantes personalizados a partir da imagem medica, englobando a extração de modelos ósseos geométricos rigorosos a partir de imagens de Tomografia Computorizada e, a partir desses modelos, desenvolver implantes personalizados baseados nas melhores praticas existentes na literatura e que satisfaçam as especificidades da anatomia do paciente. Assim, apresenta-se e discute-se um novo procedimento de segmentação em dois passos. No primeiro e feita uma pre-segmentação que visa obter uma aproximação iniciala região de interesse. De seguida, um procedimento de refinamento da segmentação totalmente automático e aplicada a segmentação inicial para obter uma descrição mais precisa do domínio de interesse. O processo de refinamento da segmentação e constituído por vários procedimentos, designadamente: recuperação da imagem original, tendo em consideração a resolução limitante do sistema de imagem; o recorte da imagem na vizinhança da região pre-segmentada; a interpolação da região de interesse; e o refinamento da segmentação aplicando a técnica de segmentação Level-Sets sobre o domínio interpolado. O procedimento de segmentação permitiu extrair modelos extremamente precisos a partir da informação imagiológica. Os resultados revelam que o fator limitante a descrição do domínio e o processo de aquisição de imagem, em detrimento dos diversos passos de processamento subsequentes. O novo protocolo de segmentação foi utilizado no desenvolvimento de três implantes personalizados, a saber: um sistema de fixação interna para a tíbia; um implante mandibular; e um sistema para a Reconstrução Total da articulação da Anca. A otimização do comportamento mecânico dos implantes foi feita utilizado o Método dos Elementos Finitos, tendo em conta os carregamentos críticos a que estes podem estar sujeitos durante a sua vida útil. O sistema de fixação interna para a tíbia e capaz de suportar os carregamentos críticos, sem que a sua integridade mecânica seja comprometida; o implante mandibular permite recuperar os campos de tensão e deformação observados em mandíbulas intactas; e a Prótese Total da Anca apresenta níveis de strain shielding ao longo do fémur proximal comparáveis com os níveis observados em dispositivos comercialmente disponíveis. Em suma, nesta tese de Doutoramento são investigados e propostos novos procedimentos para o projeto de implantes feitos por medida. São apresentadas e discutidas as linhas orientadoras para a caracterização precisa do sistema de aquisição de imagem, para o processamento de imagem, para a segmentação, e para a reconstrução 3D das estruturas anatómicas a partir da imagem medica. Este conjunto de linhas orientadoras é aplicado e validado no desenvolvimento de três implantes personalizados, citados anteriormente, para aplicações médicas distintas e que satisfazem as necessidades anatómicas específicas de cada paciente.Fundação para a Ciência e Tecnologia (FCT

    On the choice of thickness of the cement mantle in cemented hip arthroplasty

    Get PDF
    Recommendations for the optimal thickness of the cement mantle in cemented hip arthroplasty are outlined based on the results obtained with the finite element method. The investigations show that distal femur cement thickness higher than 2 mm positively affects mechanical behaviour of the cement mantle and can be useful in reducing stress-strain levels in the distal part of the femur what leads to prevention of development of a stress-shielding effect. The results of the study can contribute to the success of long-term implants

    Development of Optimal Total Hip Joint Replacement

    Get PDF
    Total hip replacement (THR) is a surgical process in which the hip joint is replaced by a hip prosthesis. It is one of the most popular and cost effective surgery. In particular in 2014, 83,125 primary procedures were recorded. Some of these operations need to be carried out again for different reasons after sometime. These are called revision (replacement of the prosthesis) procedures. Important studies and statistics suggest that the number of THR procedures is projected to increase by almost 175% by 2030. Aseptic loosening appears to be the most significant cause of failure in THR. Aseptic loosening might lead to revision surgery and in turn can be avoided by enhancing the stability and durability of the hip replacement. Primary stability attained after surgery is a determinant issue for the long-term stability of cementless hip arthroplasty. Primary stability is the level of relative micromotion between the femur and the prosthesis induced via the physiological joint forces following the surgery. The hip prosthesis is also exposed to dynamic loadings and activities of daily living, which can induce the stress distribution on the prosthesis of the hip joint model and affect the durability of the implant. The aim of this study is to develop an optimal total hip replacement (THR) implant with new and improved design features to achieve stability and durability. The micromotion between bone and implant interface and the stress distribution on the prosthesis and femur assembly has been reviewed and investigated. The laboratory testing were carried out on the femur including the compression, torsion and Brinell hardness testing. A compression testing using strain gauge technique done on the hip implant. Finite element analysis software used to simulate all compression and torsion testing assuming the same boundary and loading conditions and subsequently the computational results were compared with the earlier experimental data to verify the experiments and models used. 7 The comparative micromotion studies and findings of other researchers were used beside the clinical follow-up reports on success or failure rates of related hip designs, to justify the best solutions for design factors. In this computational approach researchers usually use finite element methodology to calculate micromotion of elements, sometimes known as migration. The elements exceeding the threshold limit would simulate the migration and subsequently eliminated from the assembly. This procedure recurs until reaching the convergence that derives a stable mechanical equilibrium. One of the restrictions of micromotion analysis was the inability to divide the final results into axial and rotational components. Therefore it would have been inappropriate to eventually conclude the best femoral stem, without considering the sustaining torsional loadings. Another limitation was that the micromotion analysis would not reflect the stress distribution on the hip prosthesis and consequently would ignore the potential high stress concentration that is associated with post operative pain as well as low durability and long-term stability. For these reasons stress analysis was carried out under dynamic loadings of nine different activities to examine the von Mises stress, shear stress and principal stress distribution of a cementless hip implant. In each activity realistic boundary and loading conditions of a complete assembly of femur and hip implant were investigated which includes defining of many variables including different geometry, material properties, boundary conditions, forces and moments of varying magnitude and orientation over specific time intervals. The critical points and areas that were developed in the entire 3D model were evaluated and explained. The finite element analysis which verified by experimental testing and hold the clinical relevance were used to decide the best optimal hip stem design amongst different presented design concepts. This was accompanied and improved with further stress analysis of different design factors to get the final optimal model. High offset stem option is a unique feature that helps tightening the abductor and boosts the hip implant stability with the ability to adjust neck and offset. It gives a surgeon more options to fix the most accurate offset and do the operation more effectively. The final optimal design and its advantages were presented in the last chapter

    Augmenting Osseointegration Of Implants Using Bone Marrow Stromal Cells

    Get PDF
    Introduction: The greatest challenge facing the success of orthopaedic implants is improving their fixation to bone to enhance their longevity. Bone marrow stromal cells (BMSC), are a population of plastic-adherent cells derived from the bone marrow. The main hypothesis of this thesis is that viable BMSC can be applied to implants using a fibrin glue-spray system; and increase bone formation adjacent to the implants and improve bone-implant contact. Methods: The experiments were undertaken in a large animal model. Four scenarios were tested 1) The ability of BMSC to improve implant fixation using models of total hip replacement, massive endoprosthetic replacement and bone defect around pins. 2) The effect of varying cell dosages of BMSC in their ability to produce new bone and improve bone implant contact. 3) The effect of differentiating the BMSC along the osteogenic pathway in their ability to produce new bone and improve bone implant contact. 4) The effect of using semi-permeable barriers around BMSC sprayed on implants to prevent cell migration Results: 1) BMSC sprayed on the surface of implants resulted in increased bone formation in the total hip replacement, massive endoprosthetic replacement and bone defect around pin models. 2) Bone formation was higher with osteogenic 10x106 BMSC (112.67 ± 30.75 mm2) compared to osteogenic 2x106 BMSC (76.84 ± 2.25 mm2). No significant difference was noted in bone formation between undifferentiated 1x105 BMSC (30.76 ± 9.43%) and undifferentiated 10x106 BMSC (28.27 ± 14.64%). 3) Osteogenic differentiated 10x106 BMSC (112.67 ± 30.75 mm2) produced more bone than undifferentiated 10x106 BMSC (58.22 ± 17.22 mm2). 4) Using semipermeable barriers resulted in significantly increased bone formation when undifferentiated 1x105 BMSC (61.32 ± 6.94% vs 30.76 ± 9.43%) or undifferentiated 10x106 BMSC (57.46 ± 4.39% vs 28.27 ± 14.64%) was used. This difference was not noted when osteogenic differentiated 10x106 BMSC was used. The experiments confirm that viable BMSC can be successfully isolated from bone marrow aspiration, differentiated along the osteogenic pathway and sprayed on the surface of various orthopaedic implants to improve bone-implant contact. Conclusion: This technique of using BMSC may be an ideal alternative to improve osseointegration of implants in challenging clinical scenarios with deficient bone stock

    Application of Engineered Porosity and Modified Effective Moduli to the Design of Orthopaedic Implants

    Get PDF
    Commercially available orthopaedic implants have a bending stiffness (flexural rigidity) that is at least 10 times greater than cortical bone. Effects of this stiffness mismatch have been extensively studied relative to total hip arthroplasty (THA). Clinical experience with THA has shown that stiffness mismatch is the primary cause of accelerated bone resorption due to the stress shielding, resulting in sub-optimal bone loading, aseptic loosening and inadequate bone support for a future revision implant. Attempts to incorporate design features that reduce the flexural rigidity of implants have yielded inconsistent results or failures due to biomaterial incompatibilities and practical manufacturing complications. The recent development of additive manufacturing (AM) processes allow the fabrication of closed-cell porous Ti or CoCr microstructures as a practical means of fabrication while reducing implant stiffness. The use of engineered porosity to modify flexural rigidity requires an ability to predict moduli from microstructural parameters. The literature is replete with different formulas which are often contradictory; existing equations relating porosity to effective moduli are generally interpretive and not predictive. This study applied finite element methods to three-dimensional porous structures with different arrangements of spheroidal voids. The resulting data show that the effective Young\u27s modulus varies linearly with &psi, the ratio of pore radius to center-to-center dimension, for a porosity range of 20 to 50%. In addition, the arrangement of spherical voids was found to have only a minimal effect on the resultant Young\u27s modulus. Predictive equations for Poisson\u27s ratio are second-order and dependent upon the void arrangement. The effect of changes in loading direction on moduli indicate that the three microstructures evaluated in this study are anisotropic, with anisotropy increasing with both ψ and volume porosity. The predictive equations developed in this study were validated with AM fabrication and testing of prototypical Ti6Al4V spinal rods. Constructs of a rhombohedral (FCC) pore arrangement with 30% porosity showed an effective reduction of ~ 50% in Young\u27s modulus. Predicted values for flexural rigidity fell within 95% confidence intervals for the tested porous Ti6Al4V constructs, confirming a design methodology with the potential of reducing the flexural rigidity, and resulting bone resorption, of orthopaedic implants

    An Investigation Of The Design And Function Of Knee Joint-sparing Massive Endoprostheses

    Get PDF
    Distal femoral and proximal tibial joint-sparing bone tumour implants allow to preserve the knee, in limb salvage surgery. The aim of this thesis was to compare implant survival, functional outcomes, acceptance, proprioception and gait in patients with knee sparing implants and conventional knee sacrificing implants. Using FEA, a distal femoral implant and cadaver bone were modelled and parametrised to find the design that improves implant fixation. A survivorship study of 104 consecutive patients following knee sparing surgery (mean follow-up 36.1 ± 11.0 months) found an implant survival rate of 78% and this is comparable to the reported survival for joint sacrificing prostheses. Younger patients showed improved implant survival compared to older individuals. Plate fracture was not observed and aseptic loosening was the main reason for revision. Radiographic analysis indicated that implantation accuracy increased implant survival. Patient questionnaires showed that patients with knee sparing implants had more normal functional outcome and acceptance compared with patients with knee sacrificing implants. However, proprioception (joint position sense) was reduced in these patients. Using optoelectronic gait analysis system, hip, knee and ankle joint angle in 19 patients and 3 healthy subjects were measured. Ground reaction force and time in stance were also investigated. Joint symmetry in the joint sacrificing group was improved compared to the joint-sparing group, however overall, the joint-sparing tibial group demonstrated a more normal gait pattern. FEA results indicated that lower resection levels, reduced plate thickness and implant materials with lower modulus, decreased the stresses in the bone adjacent to the implant while loaded the bone more to reduce risk of stress shielding. To conclude, knee sparing endoprostheses provide a reliable alternative to knee sacrificing implants in limb reconstruction in selected patients. However, the current design of joint-sparing implants can be optimised to potentially improve bone remodelling and implant fixation

    Enhanced Osseointegration of Endoprostheses Using Selective Laser Sintered Porous Titanium Alloy Combined With Solution Deposited Coatings

    Get PDF
    Massive endoprostheses are used for the reconstruction of bone defects following removal of malignant bone tumours. Aseptic loosening is a major cause of failure of endoprostheses and accounts for 25% of revisions. The main hypothesis of this thesis was that a novel porous selective laser sintered (SLS) Ti6Al4V collar augmented with electrochemically deposited hydroxyapatite coatings will enhance osseointegration. A radiological study that evaluated the effect of chemotherapy on the osseointegration of massive endoprostheses in bone tumour patients showed significantly increased loosening at 3 years in patients who received chemotherapy and that osseointegration to the implant collar was protective against signs of radiographic loosening. This study highlighted the importance of increasing osseointegration of these implants. An experimental study investigated the osseointegration of SLS Ti6Al4V collars in an ovine midshaft implant over a 6 month period. SLS porous collars provided a greater area for bone contact (p<0.001) and greater osseointegration (p<0.001), with bone directly permeating into the porous structure. Electrochemically deposited hydroxyapatite (EHA), silicate-substituted hydroxyapatite (ESiHA) and strontium-substituted hydroxyapatite (ESrHA) were developed enabling the inner pores of SLS structure to be coated. ESiHA (1.63 Si wt%) and ESrHA (4.08 Sr wt%) coatings were optimised and both crystalline and amorphous phases were found with significant dissolution of Si from ESiHA (p=0.002). No significant differences were found when stem cell proliferation and osteogenic differentiation were compared between coatings. In an ovine defect model, investigation of these coatings on SLS implants of two different pose sizes (1125μm and 550μm) showed increased osseointegration with electrochemically coated implants (p<0.001). Osseointegration was greatest with the EHA coating on the smaller pore size (p<0.05). 2 In conclusion, the hypothesis can be accepted and novel electrochemically coated laser sintered porous collars may provide a viable alternative ingrowth region to enhance the osseointegration of massive bone tumour endoprostheses
    corecore