523 research outputs found

    Cross-domain & In-domain Sentiment Analysis with Memory-based Deep Neural Networks

    Get PDF
    open4noCross-domain sentiment classifiers aim to predict the polarity, namely the sentiment orientation of target text documents, by reusing a knowledge model learned from a different source domain. Distinct domains are typically heterogeneous in language, so that transfer learning techniques are advisable to support knowledge transfer from source to target. Distributed word representations are able to capture hidden word relationships without supervision, even across domains. Deep neural networks with memory (MemDNN) have recently achieved the state-of-the-art performance in several NLP tasks, including cross-domain sentiment classifica- tion of large-scale data. The contribution of this work is the massive experimentations of novel outstanding MemDNN architectures, such as Gated Recurrent Unit (GRU) and Differentiable Neural Computer (DNC) both in cross-domain and in-domain sentiment classification by using the GloVe word embeddings. As far as we know, only GRU neural networks have been applied in cross-domain sentiment classification. Senti- ment classifiers based on these deep learning architectures are also assessed from the viewpoint of scalability and accuracy by gradually increasing the training set size, and showing also the effect of fine-tuning, an ex- plicit transfer learning mechanism, on cross-domain tasks. This work shows that MemDNN based classifiers improve the state-of-the-art on Amazon Reviews corpus with reference to document-level cross-domain sen- timent classification. On the same corpus, DNC outperforms previous approaches in the analysis of a very large in-domain configuration in both binary and fine-grained document sentiment classification. Finally, DNC achieves accuracy comparable with the state-of-the-art approaches on the Stanford Sentiment Treebank dataset in both binary and fine-grained single-sentence sentiment classification.openGianluca Moro, Andrea Pagliarani, Roberto Pasolini, Claudio SartoriGianluca Moro, Andrea Pagliarani, Roberto Pasolini, Claudio Sartor

    Style Transfer in Text: Exploration and Evaluation

    Full text link
    Style transfer is an important problem in natural language processing (NLP). However, the progress in language style transfer is lagged behind other domains, such as computer vision, mainly because of the lack of parallel data and principle evaluation metrics. In this paper, we propose to learn style transfer with non-parallel data. We explore two models to achieve this goal, and the key idea behind the proposed models is to learn separate content representations and style representations using adversarial networks. We also propose novel evaluation metrics which measure two aspects of style transfer: transfer strength and content preservation. We access our models and the evaluation metrics on two tasks: paper-news title transfer, and positive-negative review transfer. Results show that the proposed content preservation metric is highly correlate to human judgments, and the proposed models are able to generate sentences with higher style transfer strength and similar content preservation score comparing to auto-encoder.Comment: To appear in AAAI-1

    Affective Image Content Analysis: Two Decades Review and New Perspectives

    Get PDF
    Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.Comment: Accepted by IEEE TPAM

    Affective image content analysis: two decades review and new perspectives

    Get PDF

    A Unified Dual-view Model for Review Summarization and Sentiment Classification with Inconsistency Loss

    Full text link
    Acquiring accurate summarization and sentiment from user reviews is an essential component of modern e-commerce platforms. Review summarization aims at generating a concise summary that describes the key opinions and sentiment of a review, while sentiment classification aims to predict a sentiment label indicating the sentiment attitude of a review. To effectively leverage the shared sentiment information in both review summarization and sentiment classification tasks, we propose a novel dual-view model that jointly improves the performance of these two tasks. In our model, an encoder first learns a context representation for the review, then a summary decoder generates a review summary word by word. After that, a source-view sentiment classifier uses the encoded context representation to predict a sentiment label for the review, while a summary-view sentiment classifier uses the decoder hidden states to predict a sentiment label for the generated summary. During training, we introduce an inconsistency loss to penalize the disagreement between these two classifiers. It helps the decoder to generate a summary to have a consistent sentiment tendency with the review and also helps the two sentiment classifiers learn from each other. Experiment results on four real-world datasets from different domains demonstrate the effectiveness of our model.Comment: Accepted by SIGIR 2020. Updated the results of balanced accuracy scores in Table 3 since we found a bug in our source code. Nevertheless, our model still achieves higher balanced accuracy scores than the baselines after we fixed this bu

    Intention Detection Based on Siamese Neural Network With Triplet Loss

    Get PDF
    Understanding the user's intention is an essential task for the spoken language understanding (SLU) module in the dialogue system, which further illustrates vital information for managing and generating future action and response. In this paper, we propose a triplet training framework based on the multiclass classification approach to conduct the training for the intention detection task. Precisely, we utilize a Siamese neural network architecture with metric learning to construct a robust and discriminative utterance feature embedding model. We modified the RMCNN model and fine-tuned BERT model as Siamese encoders to train utterance triplets from different semantic aspects. The triplet loss can effectively distinguish the details of two input data by learning a mapping from sequence utterances to a compact Euclidean space. After generating the mapping, the intention detection task can be easily implemented using standard techniques with pre-trained embeddings as feature vectors. Besides, we use the fusion strategy to enhance utterance feature representation in the downstream of intention detection task. We conduct experiments on several benchmark datasets of intention detection task: Snips dataset, ATIS dataset, Facebook multilingual task-oriented datasets, Daily Dialogue dataset, and MRDA dataset. The results illustrate that the proposed method can effectively improve the recognition performance of these datasets and achieves new state-of-the-art results on single-turn task-oriented datasets (Snips dataset, Facebook dataset), and a multi-turn dataset (Daily Dialogue dataset)
    corecore