26,273 research outputs found

    The role of matrix cracks and fibre/matrix debonding on the stress transfer between fibre and matrix in a single fibre fragmentation test

    Get PDF
    The single fibre fragmentation test is commonly used to characterise the fibre/matrix interface. During fragmentation, the stored energy is released resulting in matrix cracking and/or fibre/matrix debonding. Axisymmetric finite element models were formulated to study the impact of matrix cracks and fibre/matrix debonding on the effective stress transfer efficiency (EST) and stress transfer length (STL). At high strains, plastic deformation in the matrix dominated the stress transfer mechanism. The combination of matrix cracking and plasticity reduced the EST and increased STL. For experimental validation, three resins were formulated and the fragmentation of an unsized and uncoupled E-glass fibre examined as a function of matrix properties. Fibre failure was always accompanied by matrix cracking and debonding. With the stiff resin, debonding, transverse matrix cracking and conical crack initiation were observed. With a lower modulus and lower yield strength resin the transverse matrix crack length decreased while that of the conical crack increased. (C) 2011 Elsevier Ltd. All rights reserved

    Crack mitigation in concrete : superabsorbent polymers as key to success?

    Get PDF
    Cracking is a major concern in building applications. Cracks may arise from shrinkage, freeze/thawing and/or structural stresses, amongst others. Several solutions can be found but superabsorbent polymers (SAPs) seem to be interesting to counteract these problems. At an early age, the absorbed water by the SAPs may be used to mitigate autogenous and plastic shrinkage. The formed macro pores may increase the freeze/thaw resistance. The swelling upon water ingress may seal a crack from intruding fluids and may regain the overall water-tightness. The latter water may promote autogenous healing. The use of superabsorbent polymers is thus very interesting. This review paper summarizes the current research and gives a critical note towards the use of superabsorbent polymers in cementitious materials

    Ultra-ductile and low friction epoxy matrix composites

    Full text link
    We present the results of an effective reinforcement of epoxy resin matrix with fullerene carbon soot. The optimal carbon soot addition of 1 wt. % results in a toughness improvement of almost 20 times. The optimized soot-epoxy composites also show an increase in tensile elongation of more than 13 %, thus indicating a change of the failure mechanism in tension from brittle to ductile. Additionally, the coefficient of friction is reduced from its 0.91 value in plain epoxy resin to 0.15 in the optimized composite. In the optimized composite, the lateral forces during nanoscratching decrease as much as 80 % with enhancement of the elastic modulus and hardness by 43 % and 94%, respectively. The optimized epoxy resin fullerene soot composite can be a strong candidate for coating applications where toughness, low friction, ductility and light weight are important.Comment: 24 pages, 7 Figures, 1 Table in Polymer Testing (2015

    Impact characterisation of doubly curved composite structure

    Get PDF
    Under repeated impact composite domes subjected 6 J energy, changes locally with increasing drop height. The action of the dynamic load generates reactions at the support and bending moments at points on the surface of the composite. The peak loads were noted to increase and stabilise about some mean value; and the 150mm diameter shell was more damage tolerant compared to the 200 mm diameter one

    Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    Get PDF
    The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2)sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix

    Virtual Delamination Testing through Non-Linear Multi-Scale Computational Methods: Some Recent Progress

    Full text link
    This paper deals with the parallel simulation of delamination problems at the meso-scale by means of multi-scale methods, the aim being the Virtual Delamination Testing of Composite parts. In the non-linear context, Domain Decomposition Methods are mainly used as a solver for the tangent problem to be solved at each iteration of a Newton-Raphson algorithm. In case of strongly nonlinear and heterogeneous problems, this procedure may lead to severe difficulties. The paper focuses on methods to circumvent these problems, which can now be expressed using a relatively general framework, even though the different ingredients of the strategy have emerged separately. We rely here on the micro-macro framework proposed in (Ladev\`eze, Loiseau, and Dureisseix, 2001). The method proposed in this paper introduces three additional features: (i) the adaptation of the macro-basis to situations where classical homogenization does not provide a good preconditioner, (ii) the use of non-linear relocalization to decrease the number of global problems to be solved in the case of unevenly distributed non-linearities, (iii) the adaptation of the approximation of the local Schur complement which governs the convergence of the proposed iterative technique. Computations of delamination and delamination-buckling interaction with contact on potentially large delaminated areas are used to illustrate those aspects
    corecore