310 research outputs found

    Comparison of Direct Multiobjective Optimization Methods for the Design of Electric Vehicles

    Get PDF
    "System design oriented methodologies" are discussed in this paper through the comparison of multiobjective optimization methods applied to heterogeneous devices in electrical engineering. Avoiding criteria function derivatives, direct optimization algorithms are used. In particular, deterministic geometric methods such as the Hooke & Jeeves heuristic approach are compared with stochastic evolutionary algorithms (Pareto genetic algorithms). Different issues relative to convergence rapidity and robustness on mixed (continuous/discrete), constrained and multiobjective problems are discussed. A typical electrical engineering heterogeneous and multidisciplinary system is considered as a case study: the motor drive of an electric vehicle. Some results emphasize the capacity of each approach to facilitate system analysis and particularly to display couplings between optimization parameters, constraints, objectives and the driving mission

    Development of a comprehensive energy model to simulate the energy efficiency of a battery electric vehicle to allow for prototype design optimisation and validation.

    Get PDF
    Masters Degree in mechanical Engineering. University of KwaZulu-Natal, Durban.This dissertation describes the development of an energy model of a battery electric vehicle (BEV) to assist designers in evaluating the impact of overall energy efficiency on vehicle performance. Energy efficiency is a crucial metric for BEVs as it defines the driving range of the vehicle and optimises the limited amount of energy available from the on-board battery pack, typically the most expensive component of the vehicle. Energy modelling also provides other useful information to the designer, such as the range of the vehicle according to legislative drive cycles and the maximum torque required from the motor. An accurate, fast and efficient model is therefore required to simulate BEVs in the early stages of design and for prototype validation. An extensive investigation into BEV modelling and the mechanisms of energy losses within BEVs was conducted. Existing literature was studied to characterise the effect of operating conditions on the efficiency of each mechanism, as well as investigating existing modelling techniques used to simulate each energy loss. A complete vehicle model was built by considering multiple domain modelling methods and the flow of energy between components in both mechanical and electrical domains. Simscape™, a MathWorks MATLAB™ tool, was used to build a physics based, forward facing model comprising a combination of custom coded blocks representing the flow of energy from the battery pack to the wheels. The acceleration and speed response of the vehicle was determined over a selected drive cycle, based on vehicle parameters. The model is applicable to normal driving conditions where the power of the motor does not exceed its continuous rating. The model relies on datasheet or non-proprietary parameters. These parameters can be changed depending on the architecture of the BEV and the exact components used, providing model flexibility. The primary model input is a drive cycle and the primary model output is range as well as the dynamic response of other metrics such as battery voltage and motor torque. The energy loss mechanisms are then assessed qualitatively and quantitatively to allow vehicle designers to determine effective strategies to increase the overall energy efficiency of the vehicle. The Mamba BEV, a small, high-power, commercially viable electric vehicle with a 21 kWh lithium-ion battery was simulated using the developed model. As the author was involved in the design and development of the vehicle, required vehicle parameters were easily obtained from manufacturers. The range of the vehicle was determined using the World-Harmonised Light Duty Vehicles Test Procedure and provided an estimated range of 285.3 km for the standard cycle and 420.8 km for the city cycle

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine

    Traction control in electric vehicles

    Get PDF
    Tese de Mestrado Integrado. Engenharia Electrotécnica e de Computadores. Área de Especialização de Automação. Faculdade de Engenharia. Universidade do Porto. 201

    Applications of Power Electronics:Volume 1

    Get PDF

    Torque Characterization of Permanent Magnet and Synchronous Reluctance Machines

    Get PDF
    The characterization of an electric machine can be evaluated using different available machine design and analysis softwares prior to manufacturing. These machine design softwares are either Finite Element Analysis (FEA) based or analytical model based. Each design software formulates and solves the machine design problem differently. Therefore, there is always a discrepancy in the results obtained from each of these softwares. The expertise of the user also affects the outcome of the analysis. Moreover, the desired performance of a machine is highly influenced by the manufacturing and assembly process of its various components. Hence, it is extremely important to characterize the design and performance of a special machine in different machine design softwares before and after fabrication. To validate the design methodologies, the accuracy of FEA softwares, machine models, as well as the manufacturing and assembly process, a comparative analysis should be performed between the results obtained from the software and experimental characterizations. In this thesis, the characterization of a variable-flux permanent magnet machine, synchronous reluctance machines (SynRMs), and a novel interior permanent magnet synchronous machine (PMSM) with improved torque utilization, is presented. Three different machine design softwares, namely MotorSolve, MagNet, and MagneForce are used to characterize the machines. This thesis initially presents the characterization of a 7.5 hp variable-flux permanent magnet machine. The back emf, magnet flux linkage, torque-angle, and core loss characterization is carried out for this machine. An error band is introduced for the experimental torque-angle curves. This error band contains the tolerance and resolution of the torque transducer and conditioner. Additionally, an analytical model is implemented to estimate the core losses in the prototyped variable-flux PM machine. The results obtained from software and experimental characterizations show an acceptable agreement. A comprehensive manufacturing and assembly process of the SynRMs for rapid prototyping is also presented in this thesis. The application of nonconventional photochemical machining process to produce the SynRM laminations is described. In addition, various stages of manufacturing, stator and rotor assembly techniques, rotor balancing procedure as well as specialized components used at various stages of the process are also presented. To validate the accuracy of the design and fabrication, the characterization of three SynRMs is then performed. This consists of static torque-angle characterization, inductance characterization, and dynamic characterization. An error band is also included for the experimental torque-angle curves. A regenerative dynamometer test system is developed to perform various static and dynamic characterizations. This test setup is equipped with a real-time supervisory controller as well as measurement and monitoring instruments. Finally, a novel interior PMSM topology with improved torque utilization to reduce magnet volume is characterized. The no-load back emf and static torque-angle are simulated and measured. A search coil based advance instrumentation system to monitor the machine’s parameters is discussed. The design, manufacturing, and implementation of the search coils to measure flux density in the stator of the novel interior PMSM are also discussed. For every characterization, a comparative analysis is performed to validate the design methodologies, accuracy of FEA softwares, machine models, manufacturing, and assembly process

    Advanced design methodology for permanent magnet synchronous machines in power applications

    Get PDF
    Most of the world electrical energy is consumed by electric motors, and then, the improvement in their performance leads to essential savings in the global energy consumption, required to reduce the CO2 emissions. Actually, the policies of governments and institutions are becoming more demanding and the manufacturers are forced to offer more and more optimized products. Moreover, many applications are increasingly demanding high performance in terms of power density, reliability or dynamic response, as in the case of electric vehicle, wind power generation or railway traction. The high energetic content of neodymium magnets causes that the permanent magnet machines (PMSM) are the more attractive option with respect to power density. In addition, thanks to the almost complete elimination of the rotor losses they are the most energetically efficient machines. The PMSM design requires of a multiphysical approach since it comprises electric, magnetic and thermal aspects. In this work, a comprehensive review of the technical literature regarding these machines has been done, and some areas for improvement have been found. Firstly, it is common that the procedure starts from a quite defined machine and just an optimization of a specific part is realized. Moreover, excessive dependence on designer’s experience and knowhow is observed, without giving clear instructions for taking design decisions. Finally, excessive dependence on time consuming FEM models is found. Hence, the main objective of this thesis is to develop and propose an advanced design methodology for PMSM design, characterized by being clear and complete, considering whole the design process and giving criteria and tools for taking decisions which lead to an optimum choice of the final solution. A PMSM design methodology has been proposed that enables the evaluation of large amounts of configurations in an automatic manner, easing to the designer the process of taking the final design decision. To implement this methodology, several tools have been developed and explained in detail: electromagnetic models coupled to thermal models and lumped parameter electromagnetic models. Some important modifications were done in the thermal models taken as a reference in order to consider different cooling conditions. In addition, a basis permeance network model was adapted to the selected machine topology and it was used to demonstrate its suitability to be used in combination with Frozen Permeability technique. Following the proposed design methodology, a 75 kW PMSM prototype was designed and validated at the IK4‐IKERLAN medium voltage laboratory. The obtained results have validated both the proposed design methodology and the developed and employed tools.La mayor parte de la energía eléctrica mundial es consumida en motores eléctricos, por lo que la mejora de sus prestaciones conduce a ahorros en el consumo energético esenciales si se quieren reducir las emisiones de CO2. De hecho, las políticas de gobiernos y asociaciones cada vez son más exigentes, y los diseñadores se ven forzados a lanzar productos cada vez más optimizados. Además, cada vez hay más aplicaciones que son muy exigentes en términos de densidad de potencia, fiabilidad o prestaciones dinámicas, como son el vehículo eléctrico, la generación eólica o la tracción ferroviaria. El altísimo contenido energético de los imanes de neodimio provoca que las máquinas imanes permanentes (PMSM) sean las más atractivas en términos de densidad de potencia. Además, debido a la casi total eliminación de pérdidas en el rotor se convierten en las máquinas más eficientes energéticamente. El diseño de una PMSM requiere de un enfoque multidisciplinar, ya que engloba aspectos eléctricos, magnéticos y térmicos. En este trabajo, se ha realizado una revisión exhaustiva de la literatura técnica publicada hasta la fecha en relación con el diseño de estas máquinas, y se han encontrado ciertos puntos de mejora. En primer lugar, muchas veces se parte de un diseño bastante definido y se optimiza una parte concreta del mismo. Además, se aprecia excesiva dependencia de la experiencia y knowhow del diseñador, sin establecer pautas claras para la toma de decisiones de diseño. Finalmente, dependen excesivamente del temporalmente costoso FEM. Por lo tanto, el objetivo principal de esta tesis es desarrollar una metodología avanzada de diseño de PMSMs que sea clara y completa, abarcando todo el proceso de diseño y aportando criterios y herramientas para la toma de decisiones que conduzcan a una elección óptima de la solución final. Se ha propuesto una metodología de diseño que permite la evaluación de gran cantidad de configuraciones de PMSM de forma automática, facilitando la decisión de diseño final por parte del diseñador. Para la implementación de esta metodología, diversas herramientas han tenido que ser desarrolladas y son explicadas en detalle: modelos analíticos electromagnéticos acoplados con modelos térmicos, y modelos electromagnéticos de parámetros concentrados. Importantes modificaciones fueron realizadas sobre los modelos térmicos adoptados para considerar diferentes refrigeraciones. Además, el circuito electromagnético de parámetros concentrados fue adaptado a la topología seleccionada y demostró su validez para ser utilizado en combinación con la técnica de Frozen Permeability. Siguiendo la metodología propuesta, se ha diseñado y fabricado un prototipo de 75 kW y se ha realizado la validación experimental en el laboratorio de media tensión de IK4‐IKERLAN. Los resultados obtenidos han servido para validar tanto la metodología de diseño como las herramientas empleadas en la misma.Munduko energia elektrikoaren zatirik handiena motor elektrikoetan kontsumitzen da, eta, ondorioz, prestazioak hobetzeak lagundu egiten du kontsumo energetikoan funtsezko aurrezpenak egiten, CO2 igorpenak murriztu nahi badira. Berez, gobernuen eta elkarteen eskakizunak gero eta zorrotzagoak dira, eta diseinatzaileak produktu gero eta optimizatuak atera beharrean daude. Gainera, gero eta aplikazio gehiago daude zorroztasun handia eskatzen dutenak potentzi dentsitateari, fidagarritasunari edo prestazio dinamikoei dagokienez, esaterako, ibilgailu elektrikoan, sorkuntza eolikoan edo tren trakzioan. Neodimiozko imanen eduki energetiko itzelaren ondorioz, iman makina iraunkorrak (PMSM) dira erakargarrienak potentzi dentsitateari dagokionez. Gainera, errotorearen galerak ia guztiz deuseztatzen direnez, energetikoki makinarik eraginkorrenak dira. PMSM bat diseinatzeko diziplina askoko ikuspegia behar da, alderdi elektrikoak, magnetikoak eta termikoak hartzen baititu bere baitan. Lan honetan orain arte honelako makinen diseinuari buruz argitaratutako literatura teknikoaren azterketa zehatza egin da, eta hobetzeko hainbat puntu aurkitu dira. Lehenik eta behin, askotan, abiapuntua nahiko definituta dagoen diseinu bat izaten da, eta egiten dena da horren zati jakin bat optimizatu. Gainera, gehiegizko mendekotasuna egoten da diseinatzailearen esperientzia eta knowhow‐arekiko, diseinuaren inguruko erabakiak hartzeko jarraibide argiak ezarri gabe. Azkenik, mendekotasun handia dago FEMek behin‐behinean duen kostu handiarekiko. Horrenbestez, tesiaren helburu nagusia da PMSMak diseinatzeko metodologia aurreratu bat garatzea, argia eta osatua, diseinuaren prozesu osoa hartuko duena, eta erabakiak hartzeko irizpideak eta tresnak eskainiko dituena, amaierako soluziorik onena aukeratu ahal izateko. Diseinurako proposatu den metodologiarekin PMSMko konfigurazio kopuru handi bat ebaluatu daiteke automatikoki, diseinatzaileari amaierako diseinua erabakitzen laguntzeko. Metodologia inplementatzeko, hainbat tresna garatu behar izan dira, eta horiek zehatz esplikatzen dira: eredu analitiko elektromagnetikoak, eredu termikoekin uztartuta, eta parametro kontzentratuen bidezko eredu elektromagnetikoak. Hautatutako eredu termikoetan aldaketa garrantzitsuak egin behar izan ziren, hozkuntza desberdinak lantzeko. Horrez gain, parametro kontzentratuen zirkuitu elektromagnetikoa hautatutako topologiara egokitu zen, eta bere balioa frogatu zuen, Frozen Permeability teknikarekin konbinatuta erabiltzeko. Proposatutako metodologiari jarraituz, 75 kW‐eko prototipo bat diseinatu eta fabrikatu da, eta balioztapen esperimentala egin da IK4‐IKERLANeko tentsio ertaineko laborategian. Lortutako emaitzek diseinuaren metodologia zein bertan erabilitako tresnak balioztatzeko balio izan dute
    corecore