165 research outputs found

    Lunar Rover with Multiple Science Handling Capability

    Get PDF
    A rover design study was undertaken for exploration of the Moon. Rovers that have been launched in the past carried a suite of science payload either onboard its body or on the robotic arm’s end. No rover has so far been launched and tasked with “carrying and deploying” a payload on an extraterrestrial surface. This paper describes a lunar rover designed for deploying payload as well as carrying a suite of instruments onboard for conventional science tasks. The main consideration during the rover design process was the usage of existing, in-house technology for development of some rover systems. The manipulation subsystem design was derived from the technology of Light Weight Robot, a dexterous arm originally developed for terrestrial applications. Recent efforts have led to definition of a mission architecture for exploration of the Moon with such a rover. An outline of its design, the manipulating arm technology and the design decisions that were made has been presented

    ORYX 2.0: A Planetary Exploration Mobility Platform

    Get PDF
    This project involved the design, manufacturing, integration, and testing of ORYX 2.0, a modular mobility platform. ORYX 2.0 is a rover designed for operation on rough terrain to facilitate space related technology research and Earth exploration missions. Currently there are no low-cost rovers available to academia or industry, making it difficult to conduct research related to surface exploration. ORYX 2.0 fills this gap by serving as a ruggedized highly mobile research platform with many features aimed at simplifying payload integration. Multiple teleoperated field testing trials on a variety of terrains validated the rover’s ruggedness and ability to operate soundly. Lastly, a deployable pan-tilt camera was designed, built, and tested, as an example payload

    ORYX 2.0: A Planetary Exploration Mobility Platform

    Get PDF
    This project involved the design, manufacturing, integration, and testing of ORYX 2.0, a modular mobility platform. ORYX 2.0 is a rover designed for operation on rough terrain to facilitate space related technology research and Earth exploration missions. Currently there are no low-cost rovers available to academia or industry, making it difficult to conduct research related to surface exploration. ORYX 2.0 fills this gap by serving as a ruggedized highly mobile research platform with many features aimed at simplifying payload integration. Multiple teleoperated field testing trials on a variety of terrains validated the rover\u27s ruggedness and ability to operate soundly. Lastly, a deployable pan-tilt camera was designed, built, and tested, as an example payload

    Proceedings of the 40th Aerospace Mechanisms Symposium

    Get PDF
    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 40th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 40th AMS, hosted by the Kennedy Space Center (KSC) in Cocoa Beach, Florida, was held May 12, 13 and 14, 2010. During these three days, 38 papers were presented. Topics included gimbals and positioning mechanisms, CubeSats, actuators, Mars rovers, and Space Station mechanisms. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administratio

    Proceedings of the 8th Annual Summer Conference: NASA/USRA Advanced Design Program

    Get PDF
    Papers presented at the 8th Annual Summer Conference are categorized as Space Projects and Aeronautics projects. Topics covered include: Systematic Propulsion Optimization Tools (SPOT), Assured Crew Return Vehicle Post Landing Configuration Design and Test, Autonomous Support for Microorganism Research in Space, Bioregenerative System Components for Microgravity, The Extended Mission Rover (EMR), Planetary Surface Exploration MESUR/Autonomous Lunar Rover, Automation of Closed Environments in Space for Human Comfort and Safety, Walking Robot Design, Extraterrestrial Surface Propulsion Systems, The Design of Four Hypersonic Reconnaissance Aircraft, Design of a Refueling Tanker Delivering Liquid Hydrogen, The Design of a Long-Range Megatransport Aircraft, and Solar Powered Multipurpose Remotely Powered Aircraft

    Project UM-HAUL (UnManned Heavy pAyload Unloader and Lander): The design of a reusable lunar lander with an independent cargo unloader

    Get PDF
    Project UM-Haul is the preliminary design of a reusable lunar transportation vehicle that travels between a lunar parking orbit and the lunar surface. This vehicle is an indispensible link in the overall task of establishing a lunar base as defined by the NASA Space Exploration Initiative. The response to this need consists of two independent vehicles: a lander and an unloader. The system can navigate and unload itself with a minimum amount of human intervention. The design addresses structural analysis, propulsion, power, controls, communications, payload handling and orbital operations. The Lander has the capacity to decend from low lunar orbit (LLO) to the lunar surface carrying a 7000 kg payload, plus the unloader, plus propellant for ascent to LLO. The Lander employs the Unloader by way of a motorized ramp. The Unloader is a terrain vehicle capable of carrying cargoes of 8,500 kg mass and employs a lift system to lower payloads to the ground. The system can perform ten missions before requiring major servicing

    The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling

    Get PDF
    The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples

    Advanced extravehicular activity systems requirements definition study. Phase 2: Extravehicular activity at a lunar base

    Get PDF
    The focus is on Extravehicular Activity (EVA) systems requirements definition for an advanced space mission: remote-from-main base EVA on the Moon. The lunar environment, biomedical considerations, appropriate hardware design criteria, hardware and interface requirements, and key technical issues for advanced lunar EVA were examined. Six remote EVA scenarios (three nominal operations and three contingency situations) were developed in considerable detail

    Mars delivery service - development of the electro-mechanical systems of the Sample Fetch Rover for the Mars Sample Return Campaign

    Get PDF
    This thesis describes the development of the Sample Fetch Rover (SFR), studied for Mars Sample Return (MSR), an international campaign carried out in cooperation between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). The focus of this document is the design of the electro-mechanical systems of the rover. After placing this work into the general context of robotic planetary exploration and summarising the state of the art for what concerns Mars rovers, the architecture of the Mars Sample Return Campaign is presented. A complete overview of the current SFR architecture is provided, touching upon all the main subsystems of the spacecraft. For each area, it is discussed what are the design drivers, the chosen solutions and whether they use heritage technology (in particular from the ExoMars Rover) or new developments. This research focuses on two topics of particular interest, due to their relevance for the mission and the novelty of their design: locomotion and sample acquisition, which are discussed in depth. The early SFR locomotion concepts are summarised, covering the initial trade-offs and discarded designs for higher traverse performance. Once a consolidated architecture was reached, the locomotion subsystem was developed further, defining the details of the suspension, actuators, deployment mechanisms and wheels. This technology is presented here in detail, including some key analysis and test results that support the design and demonstrate how it responds to the mission requirements. Another major electro-mechanical system developed as part of this work is the one dedicated to sample tube acquisition. The concept of operations of this machinery was defined to be robust against the unknown conditions that characterise the mission. The design process led to a highly automated robotic system which is described here in its main components: vision system, robotic arm and tube storage

    Project Minerva: A low cost manned Mars mission based on indigenous propellant production

    Get PDF
    Project Minerva is a low-cost manned Mars mission designed to deliver a crew of four to the Martian surface using only two sets of two launches from the Kennedy Space Center. Key concepts which make this mission realizable are the use of near-term technologies and in-situ propellant production, following the scenario originally proposed by R. Zubrin. The first set of launches delivers two unmanned payloads into low Earth orbit (LEO): the first payload consists of an Earth Return Vehicle (ERV), a propellant production plant, and a set of robotic vehicles; the second payload consists of the trans-Mars injection (TMI) upper stage. In LEO, the two payloads are docked and the configuration is injected into a Mars transfer orbit. The landing on Mars is performed with the aid of multiple aerobraking maneuvers. On the Martian surface, the propellant production plant uses a Sabatier/electrolysis type process to combine nine tons of hydrogen with carbon dioxide from the Martian atmosphere to produce over a hundred tons of liquid oxygen and liquid methane, which are later used as the propellants for the rover expeditions and the manned return journey of the ERV. The systems necessary for the flights to and from Mars, as well as those needed for the stay on Mars, are discussed. These systems include the transfer vehicle design, life support, guidance and communications, rovers and telepresence, power generation, and propellant manufacturing. Also included are the orbital mechanics, the scientific goals, and the estimated mission costs
    • …
    corecore