1,154 research outputs found

    Experimental Investigation on Surface Roughness in Electrical Discharge Turning of Ti-6Al-4V Alloy

    Get PDF
    This study presents a novel EDM turning process specially designed and developed to generate precise cylindrical forms on hard and difficult-to-machine materials. For this purpose, a specially designed turning spindle is used. The spindle was mounted on a conventional die-sinking EDM machine to rotate the workpiece. Axially symmetric parts can be manufactured by feeding the shaped tool into the rotating workpiece. In this way an axisymmetric workpiece can be made with small tools at both macro and micro levels. Effects of machining parameters, such as the current, pulse-on time, rotational speed, flushing pressure, and duty factor, on the surface roughness of Ti-6Al-4V alloy in electrical discharge turning were investigated. Taguchi\u27s design of experiment technique was used. Analysis of variance and regression analysis were performed on experimental data. The signal-to-noise ratio analysis was employed to find the optimal condition

    Experimental Studies on Machinability of Inconel Super Alloy during Electro-Discharge Machining: Emphasis on Surface Integrity and Metallurgical Characteristics of the EDMed Work Surface

    Get PDF
    Inconel alloys are Nickel-Chromium based high temperature super alloys widely applied in aerospace, marine, nuclear power generation; chemical, petrochemical and process industries. Execution of traditional machining operations on Inconel super alloy is quite difficult due to its very low thermal conductivity which increases thermal effects during machining operations. Inconel often exhibits strong work hardening behavior, high adhesion characteristics onto the tool face, and thereby alters cutting process parameters to a remarkable extent. Additionally, Inconel may contain hard abrasive particles and carbides that create excessive tool wear; and, hence, surface integrity of the end product appears disappointing. The extent of tool life is substantially reduced. Thus, Inconel super alloys are included in the category of ‘difficult-to-cut’ materials. In view of the difficulties faced during conventional machining, non-traditional machining routes like Electro-Discharge Machining (EDM), Wire Electro-Discharge Machining (WEDM), micro-machining (micro-electro-discharge drilling) etc. are being attempted for processing of Inconel in order to achieve desired contour and intricate geometry of the end product with reasonably good dimensional accuracy. However, low material removal rate and inferior surface integrity seem to be a challenge. In this context, the present dissertation has aimed at investigating machining and machinability aspects of Inconel super alloys (different grades) during electro-discharge machining. Effects of process control parameters (viz. peak discharge current, pulse-on time, gap voltage, duty factor, and flushing pressure) on influencing EDM performance in terms of Material Removal Rate (MRR), Electrode Wear Rate (EWR) and Surface Roughness (SR) of the EDMed Inconel specimens have been examined. Morphology along with topographical features of the EDMed Inconel work surface have been studied in view of severity of surface cracking and extent of white layer depth. Additionally, X-Ray Diffraction (XRD) analysis has been carried out to study metallurgical characteristics of the EDMed work surface of Inconel specimens (viz. phases present and precipitates, extent of grain refinement, crystallite size, and dislocation density etc.) in comparison with that of ‘as received’ parent material. Results, obtained thereof, have been interpreted with relevance to Energy Dispersive X-ray Spectroscopy (EDS) analysis, residual stress and micro-indentation hardness test data. Effort has been made to determine the most appropriate EDM parameters setting to optimize MRR, EWR, along with Ra (roughness average), relative Surface Crack Density (SCD), as well as relative White Layer Thickness (WLT) observed onto the EDMed work surface of Inconel specimens. Moreover, an attempt has been made to examine the ease of electro-discharge machining on Inconel work materials using Deep Cryogenically Treated (DCT) tool/workpiece. A unified attempt has also made to compare surface integrity and metallurgical characteristics of the EDMed Inconel work surface as compared to the EDMed A2 tool steel (SAE 304SS) as well as EDMed Titanium alloy (Ti-6Al-4V)

    IMPROVEMENT OF SURFACE QUALITY OF Ti-6Al-4V ALLOY BY POWDER MIXED ELECTRICAL DISCHARGE MACHINING USING COPPER POWDER

    Get PDF
    Electrical Discharge Machining (EDM) is one of the most popular non-conventional machining processes that are being used in many high precision manufacturing industries. To increase the EDM performance, a hybrid technique, namely, powder mixed electrical discharge machining (EDM) (PMEDM) is generally used for getting more precise requirements. In this study, an experimental investigation is carried out in order to explore the machining performance of the PMEDM process on Ti-6Al-4V alloy using copper (Cu) powder in the EDM oil dielectric. Taguchi’s L18 orthogonal array design has been utilized for design of experiments and the analysis of variance (ANOVA) has been performed with the help of Minitab-19 software. The optimal parametric setting of Cu powder mixed EDM has been found utilizing the Taguchi - Grey Relational Analysis (GRA) integrated approach and also validation of optimal parametric setting is done through experimentation. It is a novel approach for machining Ti-6Al-4V alloy by this PMEDM technique in which the surface quality has been improved significantly with the addition of suitable amount of Cu powder into the dielectric medium

    Experimental Investigations of Using Aluminum Oxide (Al2O3) and Nano-Graphene Powder in the Electrical Discharge Machining of Titanium Alloy

    Get PDF
    In the present study, a comprehensive parametric analysis was carried out using the electrical discharge machining of Ti6Al4V, using pulse-on time, current, and pulse-off time as input factors with output measures of surface roughness and material removal rate. The present study also used two different nanopowders, namely alumina and nano-graphene, to analyze their effect on output measures and surface defects. All the experimental runs were performed using Taguchi’s array at three levels. Analysis of variance was employed to study the statistical significance. Empirical relations were generated through Minitab. The regression model term was observed to be significant for both the output responses, which suggested that the generated regressions were adequate. Among the input factors, pulse-off time and current were found to have a vital role in the change in material removal rate, while pulse-on time was observed as a vital input parameter. For surface quality, pulse-on time and pulse-off time were recognized to be influential parameters, while current was observed to be an insignificant factor. Teaching–learning-based optimization was used for the optimization of output responses. The influence of alumina and nano-graphene powder was investigated at optimal process parameters. The machining performance was significantly improved by using both powder-mixed electrical discharge machining as compared to the conventional method. Due to the higher conductivity of nano-graphene powder, it showed a larger improvement as compared to alumina powder. Lastly, scanning electron microscopy was operated to investigate the impact of alumina and graphene powder on surface morphology. The machined surface obtained for the conventional process depicted more surface defects than the powder-mixed process, which is key in aeronautical applications.This research received some help from the Basque government through University research groups, grant IT1573-22. Authors work in cooperation under a common agreement in the field of EDM

    Experimental Investigation On Machining Performance of Ti6Al4V On Electro Discharge Machining Using Stationary and Rotary Electrode

    Get PDF
    Titanium alloys are commonly used in different industries due to its high strength and less in weight. Even though the machinability of titanium alloys is very less, due to its high strength, it becomes more useful in aerospace and medical industries. In this study, the performance of stationary and rotary copper electrodes on machining of Titanium alloy Ti-6Al-4V with Electro Discharge Machining (EDM). Material removal rate(MRR), tool ware rate(TWR) and surface roughness(SR) were analyzed with three controllable input parameters such as pulse on time (Ton), Peak Current(Ip) and Gap Voltage (V). The design of experiment chosen for the experimentation as the Box-Behnken response surface design method. The results are analysed using grey relational analysis(GRA) coupled with firefly algorithm. In both the case of stationary and rotary electrode, it was revealed that gap voltage is significant for overall grey relational grade. The machining performance of Titanium alloy Ti-6Al-4V in the case of rotary mode of electrode is quite better as compare to the stationary mode of operation

    Experimental Investigation On Machining Performance of Ti6Al4V On Electro Discharge Machining Using Stationary and Rotary Electrode

    Get PDF
    Titanium alloys are commonly used in different industries due to its high strength and less in weight. Even though the machinability of titanium alloys is very less, due to its high strength, it becomes more useful in aerospace and medical industries. In this study, the performance of stationary and rotary copper electrodes on machining of Titanium alloy Ti-6Al-4V with Electro Discharge Machining (EDM). Material removal rate(MRR), tool ware rate(TWR) and surface roughness(SR) were analyzed with three controllable input parameters such as pulse on time (Ton), Peak Current(Ip) and Gap Voltage (V). The design of experiment chosen for the experimentation as the Box-Behnken response surface design method. The results are analysed using grey relational analysis(GRA) coupled with firefly algorithm. In both the case of stationary and rotary electrode, it was revealed that gap voltage is significant for overall grey relational grade. The machining performance of Titanium alloy Ti-6Al-4V in the case of rotary mode of electrode is quite better as compare to the stationary mode of operation

    Perspective and Prospects of Wire Electric Discharge Machining (WEDM)

    Get PDF
    Wire Electric Discharge Machining (WEDM) is a non-traditional machining method that is widely used in the manufacture of aerospace/aircraft and medical equipment for conductive materials. WEDM products are expected to have good dimensional accuracy, surface roughness, and geometry. Many researchers have done experiments on various materials to optimize the process, which has many parameters and response characteristics. This paper provides an overview of the WEDM process on alloy steels in order to understand the impact of input process variables on output responses and optimization techniques for selecting optimal process parameters. This paper also highlights WEDM process trends as well as workpiece materials, wire varieties, wire diameters, and optimization approaches. This work is expected to be useful in initiating further research on WEDM by documenting substantial research works confirming the latest scenario

    Perspective and Prospects of Wire Electric Discharge Machining (WEDM)

    Get PDF
    Wire Electric Discharge Machining (WEDM) is a non-traditional machining method that is widely used in the manufacture of aerospace/aircraft and medical equipment for conductive materials. WEDM products are expected to have good dimensional accuracy, surface roughness, and geometry. Many researchers have done experiments on various materials to optimize the process, which has many parameters and response characteristics. This paper provides an overview of the WEDM process on alloy steels in order to understand the impact of input process variables on output responses and optimization techniques for selecting optimal process parameters. This paper also highlights WEDM process trends as well as workpiece materials, wire varieties, wire diameters, and optimization approaches. This work is expected to be useful in initiating further research on WEDM by documenting substantial research works confirming the latest scenario

    TAGUCHI OPTIMIZATION OF MULTIPLE PERFORMANCE CHARACTERISTICS IN THE ELECTRICAL DISCHARGE MACHINING OF THE TIGR2

    Get PDF
    Electrical discharge machining (EDM) provides many advantages for the shaping of metallic materials. It also provides better surface quality for Ti alloys used in the defense industry.  In this study, experiments were carried out with different EDM parameters using the Titanium (Gr2) alloy. A number of novel industrial processes have been developed as a result of advances in technology. For a product to be developed, these novel approaches must be utilized to determine optimum parameters. The Taguchi method was applied in the experiments with EDM. The impact the test parameters had on the performance characteristics of tool wear rate, material removal rate, depth, and surface roughness were analyzed by the variance analysis (ANOVA). Quadratic regression analyses were carried out to reveal the correlation between the experimental results and the predicted values. According to the ANOVA results for material removal rate (MRR), tool wear rate (TWR), depth, and surface roughness, the most effective factor was amperage, at 99.66%, 99.56%, 87.95%, and 81.12%, respectively.  The best value for average surface roughness was determined to be 3.29 µm obtained at 120 μs time-on, 8 A, and 40 μs time-off.Electrical discharge machining (EDM) provides many advantages for the shaping of metallic materials. It also provides better surface quality for Ti alloys used in the defense industry.  In this study, experiments were carried out with different EDM parameters using the Titanium (Gr2) alloy. A number of novel industrial processes have been developed as a result of advances in technology. For a product to be developed, these novel approaches must be utilized to determine optimum parameters. The Taguchi method was applied in the experiments with EDM. The impact the test parameters had on the performance characteristics of tool wear rate, material removal rate, depth, and surface roughness were analyzed by the variance analysis (ANOVA). Quadratic regression analyses were carried out to reveal the correlation between the experimental results and the predicted values. According to the ANOVA results for material removal rate (MRR), tool wear rate (TWR), depth, and surface roughness, the most effective factor was amperage, at 99.66%, 99.56%, 87.95%, and 81.12%, respectively.  The best value for average surface roughness was determined to be 3.29 µm obtained at 120 μs time-on, 8 A, and 40 μs time-off
    corecore