2,585 research outputs found

    Cellular Mechanisms Underlying State-Dependent Neural Inhibition with Magnetic Stimulation

    Get PDF
    Novel stimulation protocols for neuromodulation with magnetic fields are explored in clinical and laboratory settings. Recent evidence suggests that the activation state of the nervous system plays a significant role in the outcome of magnetic stimulation, but the underlying cellular and molecular mechanisms of state-dependency have not been completely investigated. We recently reported that high frequency magnetic stimulation could inhibit neural activity when the neuron was in a low active state. In this paper, we investigate state-dependent neural modulation by applying a magnetic field to single neurons, using the novel micro-coil technology. High frequency magnetic stimulation suppressed single neuron activity in a state-dependent manner. It inhibited neurons in slow-firing states, but spared neurons from fast-firing states, when the same magnetic stimuli were applied. Using a multi-compartment NEURON model, we found that dynamics of voltage-dependent sodium and potassium channels were significantly altered by the magnetic stimulation in the slow-firing neurons, but not in the fast-firing neurons. Variability in neural activity should be monitored and explored to optimize the outcome of magnetic stimulation in basic laboratory research and clinical practice. If selective stimulation can be programmed to match the appropriate neural state, prosthetic implants and brain-machine interfaces can be designed based on these concepts to achieve optimal results

    A bioresorbable peripheral nerve stimulator for electronic pain block

    Get PDF
    Local electrical stimulation of peripheral nerves can block the propagation of action potentials, as an attractive alternative to pharmacological agents for the treatment of acute pain. Traditional hardware for such purposes, however, involves interfaces that can damage nerve tissue and, when used for temporary pain relief, that impose costs and risks due to requirements for surgical extraction after a period of need. Here, we introduce a bioresorbable nerve stimulator that enables electrical nerve block and associated pain mitigation without these drawbacks. This platform combines a collection of bioresorbable materials in architectures that support stable blocking with minimal adverse mechanical, electrical, or biochemical effects. Optimized designs ensure that the device disappears harmlessly in the body after a desired period of use. Studies in live animal models illustrate capabilities for complete nerve block and other key features of the technology. In certain clinically relevant scenarios, such approaches may reduce or eliminate the need for use of highly addictive drugs such as opioids

    Electrical stimulation of renal nerves for modulating urine glucose excretion in rats

    Full text link
    Abstract Background The role of the kidney in glucose homeostasis has gained global interest. Kidneys are innervated by renal nerves, and renal denervation animal models have shown improved glucose regulation. We hypothesized that stimulation of renal nerves at kilohertz frequencies, which can block propagation of action potentials, would increase urine glucose excretion. Conversely, we hypothesized that low frequency stimulation, which has been shown to increase renal nerve activity, would decrease urine glucose excretion. Methods We performed non-survival experiments on male rats under thiobutabarbital anesthesia. A cuff electrode was placed around the left renal artery, encircling the renal nerves. Ureters were cannulated bilaterally to obtain urine samples from each kidney independently for comparison. Renal nerves were stimulated at kilohertz frequencies (1–50 kHz) or low frequencies (2–5 Hz), with intravenous administration of a glucose bolus shortly into the 25–40-min stimulation period. Urine samples were collected at 5–10-min intervals, and colorimetric assays were used to quantify glucose excretion and concentration between stimulated and non-stimulated kidneys. A Kruskal-Wallis test was performed across all stimulation frequencies (α = 0.05), followed by a post-hoc Wilcoxon rank sum test with Bonferroni correction (α = 0.005). Results For kilohertz frequency trials, the stimulated kidney yielded a higher average total urine glucose excretion at 33 kHz (+ 24.5%; n = 9) than 1 kHz (− 5.9%; n = 6) and 50 kHz (+ 2.3%; n = 14). In low frequency stimulation trials, 5 Hz stimulation led to a lower average total urine glucose excretion (− 40.4%; n = 6) than 2 Hz (− 27.2%; n = 5). The average total urine glucose excretion between 33 kHz and 5 Hz was statistically significant (p < 0.005). Similar outcomes were observed for urine flow rate, which may suggest an associated response. No trends or statistical significance were observed for urine glucose concentrations. Conclusion To our knowledge, this is the first study to investigate electrical stimulation of renal nerves to modulate urine glucose excretion. Our experimental results show that stimulation of renal nerves may modulate urine glucose excretion, however, this response may be associated with urine flow rate. Future work is needed to examine the underlying mechanisms and identify approaches for enhancing regulation of glucose excretion.https://deepblue.lib.umich.edu/bitstream/2027.42/143868/1/42234_2018_Article_8.pd

    Enhancing selectivity of minimally invasive peripheral nerve interfaces using combined stimulation and high frequency block: from design to application

    Get PDF
    The discovery of the excitable property of nerves was a fundamental step forward in our knowledge of the nervous system and our ability to interact with it. As the injection of charge into tissue can drive its artificial activation, devices have been conceived that can serve healthcare by substituting the input or output of the peripheral nervous system when damage or disease has rendered it inaccessible or its action pathological. Applications are far-ranging and transformational as can be attested by the success of neuroprosthetics such as the cochlear implant. However, the body’s immune response to invasive implants have prevented the use of more selective interfaces, leading to therapy side-effects and off-target activation. The inherent tradeoff between the selectivity and invasiveness of neural interfaces, and the consequences thereof, is still a defining problem for the field. More recently, continued research into how nervous tissue responds to stimulation has led to the discovery of High Frequency Alternating Current (HFAC) block as a stimulation method with inhibitory effects for nerve conduction. While leveraging the structure of the peripheral nervous system, this neuromodulation technique could be a key component in efforts to improve the selectivity-invasiveness tradeoff and provide more effective neuroprosthetic therapy while retaining the safety and reliability of minimally invasive neural interfaces. This thesis describes work investigating the use of HFAC block to improve the selectivity of peripheral nerve interfaces, towards applications such as bladder control or vagus nerve stimulation where selective peripheral nerve interfaces cannot be used, and yet there is an unmet need for more selectivity from stimulation-based therapy. An overview of the underlying neuroanatomy and electrophysiology of the peripheral nervous system combined with a review of existing electrode interfaces and electrochemistry will serve to inform the problem space. Original contributions are the design of a custom multi-channel stimulator able to combine conventional and high frequency stimulation, establishing a suitable experimental platform for ex-vivo electrophysiology of the rat sciatic nerve model for HFAC block, and exploratory experiments to determine the feasibility of using HFAC block in combination with conventional stimulation to enhance the selectivity of minimally-invasive peripheral nerve interfaces.Open Acces

    A Novel Approach to Peripheral Nerve Activation Using Low Frequency Alternating Currents

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The standard electrical stimulation waveform used for electrical activation of nerve is a rectangular pulse or a charge balanced rectangular pulse, where the pulse width is typically in the range of ∌100 ”sec through ∌1000 ”sec. In this work, we explore the effects of a continuous sinusoidal waveform with a frequency ranging from 5 through 20 Hz, which was named the Low Frequency Alternating Current (LFAC) waveform. The LFAC waveform was explored in the Bioelectronics Laboratory as a novel means to evoke nerve block. However, in an attempt to evoke complete nerve block on a somatic motor nerve, increasing the amplitude of the LFAC waveform unexpectedly produced nerve activation, and elicited a strong non-fatiguing muscle contraction in the anesthetized rabbit model (unpublished observation). The present thesis aimed to further explore the phenomenon to measure the effect of LFAC waveform frequency and amplitude on nerve activation. In freshly excised canine cervical vagus nerve (n=3), it was found that the LFAC waveform at 5, 10, and 20 Hz produced burst modulated activity. Compound action potentials (CAP) synchronous to the stimuli was absent from the electroneurogram (ENG) recordings. When applied in-vivo, LFAC was capable of activating the cervical vagus nerve fibers in anaesthetized swine (n=5) and induced the Hering-Breuer reflex. Additionally, when applied in-vivo to anesthetized Sprague Dawley rats (n=4), the LFAC waveform was able to activate the left sciatic nerve fibers and induced muscle contractions. The results demonstrate that LFAC activation was stochastic, and asynchronous to the stimuli unlike conventional pulse stimulation where nerve and muscle response simultaneously and synchronously to stimulus. The activation thresholds were found to be frequency dependent. As the waveform frequency increases the required current amplitude decreases. These experiments also implied that the LFAC phenomenon was most likely to be fiber type-size dependent but that more sophisticated exploration should be addressed before reaching clinical applications. In all settings, the LFAC amplitude was within the water window preventing irreversible electrochemical reactions and damages to the cuff electrodes or nerve tissues. This thesis also reconfirms the preliminary LFAC activation discovery and explores multiple methods to evaluate the experimental observations, which suggest the feasibility of the LFAC waveform at 5, 10, and 20 Hz to activate autonomic and somatic nerve fibers. LFAC appears to be a promising new technique to activate peripheral nerve fibers

    Biophysical Determinants of the Behaviour of Human Myelinated Axons

    Get PDF
    This thesis investigates the role of the hyperpolarization-activated current, Ih, on the excitability of human axons. It exploits the unique characteristics of the underlying hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels to improve existing and create new techniques for studying Ih. An isolated amplifier with low-noise and high common-mode rejection was developed, and threshold tracking techniques were modified to allow the measurement of the excitability of low-threshold sensory axons and of cutaneous afferents close to their receptors. These developments open up the possibility of studying changes in polyneuropathies, where symptoms and possibly the underlying pathology are more apparent distally in the limbs. Strong and long-lasting hyperpolarization was used to open more HCN channels and to examine their contribution to the excitability of motor and sensory axons. A mathematical model of myelinated motor axons was adapted to account for the response to strong and long-lasting hyperpolarization. Without structural changes the model was then modified to fit the observed excitability of sensory axons. Changes in the excitability and safety margin during focal hyperthermia were studied in both motor and sensory axons of the median nerve, and the underlying mechanisms were explored using the new mathematical model. Finally, the involvement of Ih in the frequency preference of oscillation in human axons was investigated by developing resonance techniques that have hitherto never been used to study axonal function

    Modulation of electrical stimulation applied to human physiology and clinical diagnostic

    Get PDF
    The use, manipulation and application of electrical currents, as a controlled interference mechanism in the human body system, is currently a strong source of motivation to researchers in areas such as clinical, sports, neuroscience, amongst others. In electrical stimulation (ES), the current applied to tissue is traditionally controlled concerning stimulation amplitude, frequency and pulse-width. The main drawbacks of the transcutaneous ES are the rapid fatigue induction and the high discomfort induced by the non-selective activation of nervous fibers. There are, however, electrophysiological parameters whose response, like the response to different stimulation waveforms, polarity or a personalized charge control, is still unknown. The study of the following questions is of great importance: What is the physiological effect of the electric pulse parametrization concerning charge, waveform and polarity? Does the effect change with the clinical condition of the subjects? The parametrization influence on muscle recruitment can retard fatigue onset? Can parametrization enable fiber selectivity, optimizing the motor fibers recruitment rather than the nervous fibers, reducing contraction discomfort? Current hardware solutions lack flexibility at the level of stimulation control and physiological response assessment. To answer these questions, a miniaturized, portable and wireless controlled device with ES functions and full integration with a generic biosignals acquisition platform has been created. Hardware was also developed to provide complete freedom for controlling the applied current with respect to the waveform, polarity, frequency, amplitude, pulse-width and duration. The impact of the methodologies developed is successfully applied and evaluated in the contexts of fundamental electrophysiology, psycho-motor rehabilitation and neuromuscular disorders diagnosis. This PhD project was carried out in the Physics Department of Faculty of Sciences and Technology (FCT-UNL), in straight collaboration with PLUX - Wireless Biosignals S.A. company and co-funded by the Foundation for Science and Technology.Fundação para a CiĂȘncia e Tecnologia (FCT); PLUX - Wireless Biosignals, S.A.; FCT-UNL- CEFITE

    Versatile LCP surface microelectrodes for combining electrophysiology and in vivo two-photon imaging in the murine CNS

    Get PDF
    Neurons and astrocytes are highly interconnected and form a complex cellular network for signal processing in the brain. The electrical activity of neurons and astroglial Ca2+ signals are tightly coupled. Parallel recording of electrical activity and Ca2+ signals can help to identify the molecular mechanisms of neuron-glia communications. In this work, flexible liquid crystal polymer microelectrode arrays for electrical recordings and stimulations during two-photon laser-scanning microscopy (2P-LSM) were developed. The arrays were designed for standard craniotomies used for cortical 2P-LSM in vivo imaging. Being of low weight, thin and flexible, they can be easily positioned between the dura mater and the glass coverslip. Three different designs were constructed: arrays (1) with eight circular electrodes (arranged in a matrix of three by three elements, sparing the center), (2) with sixteen circular electrodes (four by four matrix) and (3) with eight rectangular electrodes (placed in four groups of 2 single sites). The initial contact sites of gold were coated with nanoporous platinum to decrease the impedance of the electrode tissue contacts and to increase the charge transfer capability. The biocompatibility of the electrodes was confirmed by immuno-histochemistry. Electrical recordings and Ca2+-imaging were performed in mice with neuronal or astroglial expression of the genetically encoded Ca2+-sensor GCaMP3. With the sixteen channel electrode arrays, an estimation of the spatially resolved electrical activity pattern within the cranial window could be described. The eight channel arrays were used in studies for simultaneous acquisition of Ca2+ (using 2P-LSM) and electrical signals. In addition, Ca2+ signals could be elicited by electrical stimulation. Using different stimulation intensities and depth of anesthesia, the change of brain activity during transition from anesthetized to awake state was investigated. In addition, the LCP technology was transferred from the cortical to a spinal cord application.Neurone und Astrozyten bilden ein komplexes interagierendes zellulares Netzwerk zur Signalverarbeitung im Gehirn. Dabei sind die elektrische AktivitĂ€ten der Nervenzellen und die Ca2+ Signale der Astrozyten eng aneinander gekoppelt. Parallele Aufzeichnungen der elektrischen AktivitĂ€t und der Ca2+ Signale können helfen, die molekularen Mechanismen der Neuron-Glia-Kommunikation zu identifizieren. Innerhalb dieser Arbeit wurden flexible FlĂŒssigkristall-Polymer-Mikroelektrodenarrays fĂŒr elektrische Aufzeichnungen und Stimulationen fĂŒr die Zwei-Photonen-Laserscan- Mikroskopie (2P-LSM) entwickelt. Die Elektrodenarrays wurden fĂŒr Standard-Kraniotomien entwickelt, die fĂŒr die kortikale in vivo 2P-LSM verwendet werden. Sie sind dĂŒnn, flexibel und von geringem Gewicht und können leicht auf der Dura positioniert werden. Drei verschiedene Designs wurden konstruiert: Arrays (1) mit acht runden Elektroden (angeordnet in einer drei mal drei Matrix, ohne die mittlere Elektrode), (2) mit sechzehn kreisförmigen Elektroden (vier mal vier Matrix) und (3) mit acht rechteckigen Elektroden (angeordnet in vier Gruppen von zwei einzelnen Standorten). Die ursprĂŒnglichen Elektrodenkontakte aus Gold wurden mit nanoporösem Platin beschichtet, um die Gewebekontaktimpedanz zu verringern und die LadungsĂŒbertragungsfĂ€higkeit zu erhöhen. Die BiokompatibilitĂ€t der Elektroden immunhistochemisch getestet. Elektrische AktivitĂ€t und Ca2+ Signale wurden bei MĂ€usen mit neuronaler oder astroglialer Expression des Ca2+-Indikators GCaMP3 aufgezeichnet. Mit den sechzehn Kanal-Elektroden-Arrays konnten die elektrische AktivitĂ€t entlang der KortexoberflĂ€che innerhalb der Kraniotomie charakterisiert werden. Die achtkanaligen Arrays wurden zur gleichzeitigen Erfassung von Ca2+ (mit 2P-LSM) und elektrischen Signalen verwendet. DarĂŒber hinaus konnten Ca2+ Signale durch elektrische Stimulation hervorgerufen werden. Mit verschiedenen StimulationsintensitĂ€ten und der Tiefe der AnĂ€sthesie (Isofluran) wurde die VerĂ€nderung der HirnaktivitĂ€t beim Übergang von anĂ€sthesiert zu wach beobachtet. ZusĂ€tzlich konnte die FlĂŒssigkristall-Polymer -Technologie von der kortikalen auf die spinale Anwendung ĂŒbertragen werden.- European Union / EUGlia-PhD - European Union / Neurofibre

    Short-term synaptic plasticity regulates the level of olivocochlear inhibition to auditory hair cells

    Get PDF
    In the mammalian inner ear, the gain control of auditory inputs is exerted by medial olivocochlear (MOC) neurons that innervate cochlear outer hair cells (OHCs). OHCs mechanically amplify the incoming sound waves by virtue of their electromotile properties while the MOC system reduces the gain of auditory inputs by inhibiting OHC function. How this process is orchestrated at the synaptic level remains unknown. In the present study, MOC firing was evoked by electrical stimulation in an isolated mouse cochlear preparation, while OHCs postsynaptic responses were monitored by whole-cell recordings. These recordings confirmed that electrically evoked IPSCs (eIPSCs) are mediated solely by α9ÎČ10 nAChRs functionally coupled to calcium-activated SK2 channels. Synaptic release occurred with low probability when MOC-OHC synapses were stimulated at 1 Hz. However, as the stimulation frequency was raised, the reliability of release increased due to presynaptic facilitation. In addition, the relatively slow decay of eIPSCs gave rise to temporal summation at stimulation frequencies >10 Hz. The combined effect of facilitation and summation resulted in a frequency-dependent increase in the average amplitude of inhibitory currents in OHCs. Thus, we have demonstrated that short-term plasticity is responsible for shaping MOC inhibition and, therefore, encodes the transfer function from efferent firing frequency to the gain of the cochlear amplifier.Fil: Ballestero, Jimena Andrea. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular "Dr. HĂ©ctor N. Torres"; ArgentinaFil: Zorrilla de San MartĂ­n, Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular "Dr. HĂ©ctor N. Torres"; ArgentinaFil: Goutman, Juan Diego. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular "Dr. HĂ©ctor N. Torres"; ArgentinaFil: Elgoyhen, Ana Belen. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular "Dr. HĂ©ctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Fuchs, Paul A.. The Johns Hopkins University School of Medicine; Estados UnidosFil: Katz, Eleonora. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular "Dr. HĂ©ctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂ­a, BiologĂ­a Molecular y Celular; Argentin
    • 

    corecore