50 research outputs found

    Collinear Microstrip Patch Antennas

    Get PDF

    Advanced Radio Frequency Antennas for Modern Communication and Medical Systems

    Get PDF
    The main objective of this book is to present novel radio frequency (RF) antennas for 5G, IOT, and medical applications. The book is divided into four sections that present the main topics of radio frequency antennas. The rapid growth in development of cellular wireless communication systems over the last twenty years has resulted in most of world population owning smartphones, smart watches, I-pads, and other RF communication devices. Efficient compact wideband antennas are crucial in RF communication devices. This book presents information on planar antennas, cavity antennas, Vivaldi antennas, phased arrays, MIMO antennas, beamforming phased array reconfigurable Pabry-Perot cavity antennas, and time modulated linear array

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Antennas and Propagation for UAV-Assisted Wireless Networks Towards Next Generation Mobile Systems

    Get PDF
    Unmanned Aerial Vehicles (UAV), also known as "drones", are attracting increasing attention as enablers for many technical applications and services, and this trend is likely to continue in the near future. UAVs are expected to be used extensively in civil and military applications where aerial surveillance and assistance in emergency situations are key factors. UAVs can be more useful and flexible in reaction to specific events, like natural disasters and terrorist attacks since they are faster to deploy, easier to reconfigure and assumed to have better communication means due to their improved position in the sky, improved visibility over ground, and reduced hindrance for propagation. In this regard, UAV enabled communications emerge as one of the most promising solutions for setting-up the next-generation mobile networks, with a special focus on the extension of coverage and capacity of mobile radio networks for 5G applications and beyond. However, air-to-ground (A2G) propagation conditions are likely to be different and more challenging than those experienced by traditional piloted aircraft. For this reason, knowledge of this specific propagation channel – together with the UAV antenna design and placement - is paramount for defining an efficient communication system and for evaluating its performance. This PhD thesis tackles this challenge, and it aims at further investigating the narrowband properties of the air-to-ground propagation channel by means of GPU accelerated ray launching simulations for 5G communications and beyond. As a conclusion, this PhD thesis might bring deep insights into the air-to-ground channel characteristics and UAV antenna design, which can be helpful for designing UAV communication networks and evaluating or optimising their performances in a fast and reliable manner, with no need for exhausting – multiple - in-field measurement campaigns

    Analysis and Design of Low-Cost Waveguide Filters for Wireless Communications

    Get PDF
    The area of research of this thesis is built around advanced waveguide filter structures. Waveguide filters and the waveguide technology in general are renowned for high power capacity, low losses and excellent electromagnetic shielding. Waveguide filters are important components in fixed wireless communications as well as in satellite and radar systems. Furthermore, their advantages and utilization become even greater with increase in frequency, which is a trend in modern communication systems because upper frequency bands offer larger channel capacities. However, waveguide filters are relatively bulky and expensive. To comply with more and more demanding miniaturization and cost-cutting requirements, compactness and economical design represent some of the main contemporary focuses of interest. Approaches that are used to achieve this include use of planar inserts to build waveguide discontinuities, additive manufacturing and substrate integration. At the same time, waveguide filters still need to satisfy opposed stringent requirements like small insertion loss, high selectivity and multiband operation. Another difficulty that metal waveguide components face is integration with other circuitry, especially important when solid-state active devices are included. Thus, improvements of interconnections between waveguide and other transmission interfaces are addressed too. The thesis elaborates the following aspects of work: Further analysis and improved explanations regarding advanced waveguide filters with E-plane inserts developed by the Wireless Communications Research Group, using both cross coupled resonators and extracted pole sections (Experiments with higher filter orders, use of tuning screws, degrees of freedom in design, etc. Thorough performance comparison with competing filter technologies) - Proposing novel E-plane filter sections with I-shaped insets - Extension of the E-plane filtering structures with metal fins to new compact dual band filters with high frequency selectivity and miniaturized diplexers. - Introduction of easy-to-build waveguide filters with polymer insert frames and high-performance low-profile cavity filters, taking advantage of enhanced fabrication capabilities when using additive manufacturing - Developing new substrate integrated filters, as well as circuits used to transfer signals between different interfaces Namely, these are substrate integrated waveguide to metal waveguide planar transitions that do not require any modifications of the metal waveguides. Such novel transitions have been designed both for single and orthogonal signal polarizations

    Impedance Transformers

    Get PDF
    Non
    corecore