14,106 research outputs found

    Global priorities for conservation across multiple dimensions of mammalian diversity

    Get PDF
    Conservation priorities that are based on species distribution, endemism, and vulnerability may underrepresent biologically unique species as well as their functional roles and evolutionary histories. To ensure that priorities are biologically comprehensive, multiple dimensions of diversity must be considered. Further, understanding how the different dimensions relate to one another spatially is important for conservation prioritization, but the relationship remains poorly understood. Here, we use spatial conservation planning to (i) identify and compare priority regions for global mammal conservation across three key dimensions of biodiversity-taxonomic, phylogenetic, and traits-and (ii) determine the overlap of these regions with the locations of threatened species and existing protected areas. We show that priority areas for mammal conservation exhibit low overlap across the three dimensions, highlighting the need for an integrative approach for biodiversity conservation. Additionally, currently protected areas poorly represent the three dimensions of mammalian biodiversity. We identify areas of high conservation priority among and across the dimensions that should receive special attention for expanding the global protected area network. These high-priority areas, combined with areas of high priority for other taxonomic groups and with social, economic, and political considerations, provide a biological foundation for future conservation planning efforts

    TOWARDS DEMAND DRIVEN PUBLISHING: APPROCHES TO THE PRIORITISATION OF DIGITISATION OF NATURAL HISTORY COLLECTIONS DATA

    Get PDF
    Natural history collections represent a vast repository of biodiversity data of international significance. There is an imperative to capture the data through digitisation projects in order to expose the data to new and established users of biodiversity data. On the basis of review of current state of digitization of natural history collections, a demand driven approach is advocated through the use of metadata to promote and increase access to natural history collection data

    How do recent spatial biodiversity analyses support the convention on biological diversity in the expansion of the global conservation area network?

    Get PDF
    ABSTRACTIn the tenth Conference of Parties to the Convention on Biological Diversity (CBD) held in Nagoya in 2010, it was decided that 17% of terrestrial and 10% of marine areas should be protected globally by 2020. It was also stated that conservation decision-making should be based on sound science. Here, we review how recent scientific literature about spatial conservation prioritization analyses and macro-ecology corresponds to the information needs posed by the Aichi Biodiversity Target 11. A literature search was performed in Web of Science to identify potentially relevant research articles published in 2010-2012. Additionally, we searched all articles published since 2000 in five high-profile scientific journals. The studies were classified by extent and resolution, and we evaluated the type and breadth of data that was utilized (This information is included in a supplementary table to facilitate further research). Implementation of the Aichi Targets would best be supported by broad-extent, high-resolution, and data-rich studies that can directly support realistic decision-making about allocation of conservation efforts at sub-continental to global extents. When looking at all evaluation criteria simultaneously, we found little research that directly supports the analytical needs of the CBD. There are many narrow- extent, low-resolution, narrow-scope, or theoretically-aimed studies that are important in developing theory and local practices, but which are not adequate for guiding conservation management at a continental scale. Even national analyses are missing for many countries. Global-extent, high-resolution analyses using broad biodiversity and anthropogenic data are needed in order to inform decision making under the CBD resolutions.© 2014 Associação Brasileira de Ciência Ecológica e Conservação. Published by Elsevier Editora Ltda

    A Scale-Explicit Framework for Conceptualizing the Environmental Impacts of Agricultural Land Use Changes

    Get PDF
    Demand for locally-produced food is growing in areas outside traditionally dominant agricultural regions due to concerns over food safety, quality, and sovereignty; rural livelihoods; and environmental integrity. Strategies for meeting this demand rely upon agricultural land use change, in various forms of either intensification or extensification (converting non-agricultural land, including native landforms, to agricultural use). The nature and extent of the impacts of these changes on non-food-provisioning ecosystem services are determined by a complex suite of scale-dependent interactions among farming practices, site-specific characteristics, and the ecosystem services under consideration. Ecosystem modeling strategies which honor such complexity are often impenetrable by non-experts, resulting in a prevalent conceptual gap between ecosystem sciences and the field of sustainable agriculture. Referencing heavily forested New England as an example, we present a conceptual framework designed to synthesize and convey understanding of the scale- and landscape-dependent nature of the relationship between agriculture and various ecosystem services. By accounting for the total impact of multiple disturbances across a landscape while considering the effects of scale, the framework is intended to stimulate and support the collaborative efforts of land managers, scientists, citizen stakeholders, and policy makers as they address the challenges of expanding local agriculture
    corecore