1,170 research outputs found

    Functionalized Carbon Nanomaterials in Drug Delivery: Emergent Perspectives from Application

    Get PDF
    Carbon nanotubes (CNTs) have attracted substantial research interest in biomedical sciences and bionanotechnology, rendered from its unique structure, electronic, mechanical, and optical properties. Despite the diverse potential applications, the integration of CNTs in biomedical research is one of the most challenging areas where nanotubes fall under much scrutiny. Pristine nanotubes are highly hydrophobic, and non-dispersible in most of the common aqueous and organic solvents and to render nanotubes biocompatible, functionalization is one of the key prerequisites. In this regard, covalent and noncovalent functionalization are the two widely adopted approaches for co-tethering biologically active molecules on the CNTs. Likewise, the hollow cavity of the nanotube facilitates in the endohedral encapsulation of biomolecules, peptides, DNA oligonucleotides, and proteins, thereby retaining the physiological attributes of the biological molecules. The chapter focuses on the emerging approaches to the functionalization of single-wall CNTs (SWCNTs) and the potential application of functionalized SWCNTs in tuberculosis and cancer chemotherapy using state-of-the-art density functional theory, molecular docking and molecular dynamics simulation methods

    A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and Applications

    Get PDF
    Double- and triple-walled carbon nanotubes (DWNTs and TWNTs) consist of coaxially-nested two and three single-walled carbon nanotubes (SWNTs). They act as the geometrical bridge between SWNTs and multi-walled carbon nanotubes (MWNTs), providing an ideal model for studying the coupling interactions between different shells in MWNTs. Within this context, this article comprehensively reviews various synthetic routes of DWNTs’ and TWNTs’ production, such as arc discharge, catalytic chemical vapor deposition and thermal annealing of pea pods (i.e., SWNTs encapsulating fullerenes). Their structural features, as well as promising applications and future perspectives are also discussed. Keywords: carbon nanotubes; double-walled carbon nanotubes; triple-walled carbon nanotubes; synthesis; catalytic chemical vapor deposition; arc discharge; fullerenes; pea pod

    The Optical Phenomena of Interplay between Nanobio Complexes: A Theoretical Insight into Their Biomedical Applications

    Get PDF
    The subnanometer‐sized coinage metal nanoparticles (NPs) have attracted more attention due to their unique electronic structures and subsequent physical, chemical and excellent photoluminescent properties. The DNA‐stabilized metal clusters had become a remarkably good choice for the selection of fluorescent color by the sequence of the stabilizing DNA oligomer. Similarly, the single‐wall carbon nanotubes (SWCNTs) also have unique optical properties which make them useful in many applications. The interaction of DNA and SWCNT is also useful in molecular sensors and it is assumed that amplification of the DNA sensing element may be necessary in the presence of SWCNTs. As the application of NP‐CNT system represents a great interest in nanobiotechnology, it can be used for the design of the electronic mobile diagnostic facilities for blood analysis and the chemical or drug delivery inside the living cell. The SWCNTs are used as a drug delivery vehicles used to target the specific cancer cells. Separately, along with DNA‐NP, the DNA‐CNT system also represents a great interest, nowadays, in biomedical applications due to diagnostics and treatment of oncology diseases. So combining the DNA‐NP‐SWCNT system can represent a potential target of modern research. The interplay of DNA, NP and SWCNTs has now become a current topic of research for further nanobiomedical applications

    Design strategies for carbon nanotube-based biosensors

    Get PDF

    Plasma Nanoscience: from Nano-Solids in Plasmas to Nano-Plasmas in Solids

    Full text link
    The unique plasma-specific features and physical phenomena in the organization of nanoscale solid-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter, to nano-plasma effects and nano-plasmas of different states of matter.Comment: This is an essential interdisciplinary reference which can be used by both advanced and early career researchers as well as in undergraduate teaching and postgraduate research trainin

    Manipulation of Carbon Nanotube Growth Direction Utilizing Magnetic Fields

    Get PDF
    Carbon nanotubes are, as the name implies, nano-scale cylindrical structures consisting of monolayer carbon atoms arranged in a hexagonal lattice rolled into tubes. The resulting tubes can either be multi-walled or single walled and have a plethora of handy properties that make them functional in a wide range of applications. Carbon nanotubes, or CNTs, are known to be ultra-high strength, low weight, material that possess highly conductive electrical and thermal properties. These attributes make CNTs well suited for virtually any application requiring high strength, durability, electrical conductivity, thermal conductivity, and lightweight. As such, carbon nanotubes are being applied to a wide range of existing technology, including transistors, electrodes, nanomedicine, biotechnology, and filtration as well as being used to fabricate new tech, like carbon nanotube enhanced composites and nano inks. However, the main drawback of carbon nanotubes is that they can only be grown to relatively short lengths without them no longer growing in a straight line. This project primarily focused on accurately simulating carbon nanotubes using molecular dynamics with the ultimate goal of showing that an applied magnetic field can manipulate carbon nanotubes. The CNT is generated using a Lennard- Jones potential from AIREBO (Adaptive Intermolecular Reactive Empirical Bond Order), a well-trusted and often used set of potentials to simulate dynamic bonding processes. To verify the validity of the carbon nanotubes, CNTs of various lengths underwent deformation at 300K, 500K, 700K, and 900K to determine the tensile strength. Once this was done, the determined tensile strength value was compared to the existing literature. Finally, an effective magnetic field can be applied to see if there is any deformation and its relation to the strength and direction of the magnetic field. By first simulating the deformation of CNTs due to a magnetic field, we proved the basic concept that the direction of CNT growth can be manipulated by a magnetic field, thereby making carbon nanotubes longer and straighter and fundamentally more useful in uses such as nano-fibers, composites, and more

    A new shell formulation for graphene structures based on existing ab-initio data

    Full text link
    An existing hyperelastic membrane model for graphene calibrated from ab-initio data (Kumar and Parks, 2014) is adapted to curvilinear coordinates and extended to a rotation-free shell formulation based on isogeometric finite elements. Therefore, the membrane model is extended by a hyperelastic bending model that reflects the ab-inito data of Kudin et al. (2001). The proposed formulation can be implemented straight-forwardly into an existing finite element package, since it does not require the description of molecular interactions. It thus circumvents the use of interatomic potentials that tend to be less accurate than ab-initio data. The proposed shell formulation is verified and analyzed by a set of simple test cases. The results are in agreement to analytical solutions and satisfy the FE patch test. The performance of the shell formulation for graphene structures is illustrated by several numerical examples. The considered examples are indentation and peeling of graphene and torsion, bending and axial stretch of carbon nanotubes. Adhesive substrates are modeled by the Lennard-Jones potential and a coarse grained contact model. In principle, the proposed formulation can be extended to other 2D materials.Comment: New examples are added and some typos are removed. The previous results are unchanged, International Journal of Solids and Structures (2017
    corecore