219 research outputs found

    The interaction between motion and texture in the sense of touch

    Get PDF
    Besides providing information on elementary properties of objects, like texture, roughness, and softness, the sense of touch is also important in building a representation of object movement and the movement of our hands. Neural and behavioral studies shed light on the mechanisms and limits of our sense of touch in the perception of texture and motion, and of its role in the control of movement of our hands. The interplay between the geometrical and mechanical properties of the touched objects, such as shape and texture, the movement of the hand exploring the object, and the motion felt by touch, will be discussed in this article. Interestingly, the interaction between motion and textures can generate perceptual illusions in touch. For example, the orientation and the spacing of the texture elements on a static surface induces the illusion of surface motion when we move our hand on it or can elicit the perception of a curved trajectory during sliding, straight hand movements. In this work we present a multiperspective view that encompasses both the perceptual and the motor aspects, as well as the response of peripheral and central nerve structures, to analyze and better understand the complex mechanisms underpinning the tactile representation of texture and motion. Such a better understanding of the spatiotemporal features of the tactile stimulus can reveal novel transdisciplinary applications in neuroscience and haptics

    A cross-modal investigation into the relationships between bistable perception and a global temporal mechanism

    Get PDF
    When the two eyes are presented with sufficiently different images, Binocular Rivalry (BR) occurs. BR is a form of bistable perception involving stochastic alternations in awareness between distinct images shown to each eye. It has been suggested that the dynamics of BR are due to the activity of a central temporal process and are linked to involuntary mechanisms of selective attention (aka exogenous attention). To test these ideas, stimuli designed to evoke exogenous attention and central temporal processes were employed during BR observation. These stimuli included auditory and visual looming motion and streams of transient events of varied temporal rate and pattern. Although these stimuli exerted a strong impact over some aspects of BR, they were unable to override its characteristic stochastic pattern of alternations completely. It is concluded that BR is subject to distributed influences, but ultimately, is achieved in neural processing areas specific to the binocular conflict

    Human Inspired Multi-Modal Robot Touch

    Get PDF

    Adaptation to moving tactile stimuli and its effects on perceived speed and direction

    Get PDF
    Like other senses, tactile perception is subject to adaptation effects in which systematic changes in the pattern of sensory input lead to predictable changes in perception. In this thesis, aftereffects of adaptation to tactile motion are used to reveal the processes that give rise to tactile motion perception from the relevant sensory inputs. The first aftereffect is the tactile speed aftereffect (tSAE), in which the speed of motion appears slower following exposure to a moving surface. Perceived speed of a test surface was reduced by about 30% regardless of the direction of the adapting stimulus, indicating that the tSAE is not direction sensitive. Additionally, higher adapting speeds produced a stronger tSAE, and this dependence on adapting speed could not be attributed to differences in temporal frequency or spatial period that accompanied the different adapting speeds. The second motion aftereffect that was investigated is the dynamic tactile motion aftereffect (tMAE), in which a direction-neutral test stimulus appears to move in the opposite direction to previously felt adapting motion. The strength of the tMAE depended on the speed of the adapting motion, with higher speeds producing a stronger aftereffect. Both the tSAE and the tMAE showed evidence of an intensive speed code in their underlying neural populations, with faster adapting speeds resulting in stronger aftereffects. In neither case was any evidence of speed tuning found, that is, neither aftereffect was strongest with a match between the speeds of the adapting and test stimuli. This is compatible with the response properties of motion sensitive neurons in the primary somatosensory cortex. Despite these shared features, speed and direction are unlikely to be jointly coded in the same neurons because the lack of direction sensitivity of the tSAE requires neural adaptation effects to be uniform across neurons preferring all directions, whereas the tMAE requires direction selective adaptation

    Adaptation to moving tactile stimuli and its effects on perceived speed and direction

    Get PDF
    Like other senses, tactile perception is subject to adaptation effects in which systematic changes in the pattern of sensory input lead to predictable changes in perception. In this thesis, aftereffects of adaptation to tactile motion are used to reveal the processes that give rise to tactile motion perception from the relevant sensory inputs. The first aftereffect is the tactile speed aftereffect (tSAE), in which the speed of motion appears slower following exposure to a moving surface. Perceived speed of a test surface was reduced by about 30% regardless of the direction of the adapting stimulus, indicating that the tSAE is not direction sensitive. Additionally, higher adapting speeds produced a stronger tSAE, and this dependence on adapting speed could not be attributed to differences in temporal frequency or spatial period that accompanied the different adapting speeds. The second motion aftereffect that was investigated is the dynamic tactile motion aftereffect (tMAE), in which a direction-neutral test stimulus appears to move in the opposite direction to previously felt adapting motion. The strength of the tMAE depended on the speed of the adapting motion, with higher speeds producing a stronger aftereffect. Both the tSAE and the tMAE showed evidence of an intensive speed code in their underlying neural populations, with faster adapting speeds resulting in stronger aftereffects. In neither case was any evidence of speed tuning found, that is, neither aftereffect was strongest with a match between the speeds of the adapting and test stimuli. This is compatible with the response properties of motion sensitive neurons in the primary somatosensory cortex. Despite these shared features, speed and direction are unlikely to be jointly coded in the same neurons because the lack of direction sensitivity of the tSAE requires neural adaptation effects to be uniform across neurons preferring all directions, whereas the tMAE requires direction selective adaptation

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Engineering Data Compendium. Human Perception and Performance, Volume 1

    Get PDF
    The concept underlying the Engineering Data Compendium was the product an R and D program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 1, which contains sections on Visual Acquisition of Information, Auditory Acquisition of Information, and Acquisition of Information by Other Senses

    Activity in area V3A predicts positions of moving objects

    Get PDF
    No description supplie
    • …
    corecore