1,230 research outputs found

    Brain networks in people after a first unprovoked seizure

    Get PDF
    Background: A single unprovoked seizure occurs in up to 10% of the population. Some develop epilepsy, but the majority do not. Brain network changes are observed in people with epilepsy, but it is unknown if they are present after this first seizure. This study examines network connectivity after the first seizure to determine if any changes exist. Methods: Twelve patients after a single unprovoked seizure and twelve age- and sex-matched healthy controls were recruited. All underwent 7T resting-state fMRI scanning. Whole brain and limbic, default mode and salience network connectivity were analyzed with graph theory. Results: Baseline characteristics were similar between groups. No network connectivity differences were observed between groups. Conclusions: No network connectivity differences were found between patients and controls. This suggests that there are not inherent connectivity differences predisposing an individual to seizures; however, the small sample size and considerable variability could prevent realization of small group differences

    Internet and gaming addiction: a systematic literature review of neuroimaging studies

    Get PDF
    In the past decade, research has accumulated suggesting that excessive Internet use can lead to the development of a behavioral addiction. Internet addiction has been considered as a serious threat to mental health and the excessive use of the Internet has been linked to a variety of negative psychosocial consequences. The aim of this review is to identify all empirical studies to date that used neuroimaging techniques to shed light upon the emerging mental health problem of Internet and gaming addiction from a neuroscientific perspective. Neuroimaging studies offer an advantage over traditional survey and behavioral research because with this method, it is possible to distinguish particular brain areas that are involved in the development and maintenance of addiction. A systematic literature search was conducted, identifying 18 studies. These studies provide compelling evidence for the similarities between different types of addictions, notably substance-related addictions and Internet and gaming addiction, on a variety of levels. On the molecular level, Internet addiction is characterized by an overall reward deficiency that entails decreased dopaminergic activity. On the level of neural circuitry, Internet and gaming addiction led to neuroadaptation and structural changes that occur as a consequence of prolonged increased activity in brain areas associated with addiction. On a behavioral level, Internet and gaming addicts appear to be constricted with regards to their cognitive functioning in various domains. The paper shows that understanding the neuronal correlates associated with the development of Internet and gaming addiction will promote future research and will pave the way for the development of addiction treatment approaches

    Surface-Based Regional Homogeneity in First-Episode, Drug-Naive Major Depression: A Resting-State fMRI Study

    Get PDF
    Background. Previous volume-based regional homogeneity (ReHo) studies neglected the intersubject variability in cortical folding patterns. Recently, surface-based ReHo was developed to reduce the intersubject variability and to increase statistical power. The present study used this novel surface-based ReHo approach to explore the brain functional activity differences between first-episode, drug-naive MDD patients and healthy controls. Methods. Thirty-three first-episode, drug-naive MDD patients and 32 healthy controls participated in structural and resting-state fMRI scans. MDD patients were rated with a 17-item Hamilton Rating Scale for Depression prior to the scan. Results. In comparison with the healthy controls, MDD patients showed reduced surface-based ReHo in the left insula. There was no increase in surface-based ReHo in MDD patients. The surface-based ReHo value in the left insula was not significantly correlated with the clinical information or the depressive scores in the MDD group. Conclusions. The decreased surface-based ReHo in the left insula in MDD may lead to the abnormal top-down cortical-limbic regulation of emotional and cognitive information. The surface-based ReHo may be a useful index to explore the pathophysiological mechanism of MDD.</p

    Altered Regional and Circuit Resting-State Activity Associated with Unilateral Hearing Loss

    Full text link
    The deprivation of sensory input after hearing damage results in functional reorganization of the brain including cross-modal plasticity in the sensory cortex and changes in cognitive processing. However, it remains unclear whether partial deprivation from unilateral auditory loss (UHL) would similarly affect the neural circuitry of cognitive processes in addition to the functional organization of sensory cortex. Here, we used resting-state functional magnetic resonance imaging to investigate intrinsic activity in 34 participants with UHL from acoustic neuroma in comparison with 22 matched normal controls. In sensory regions, we found decreased regional homogeneity (ReHo) in the bilateral calcarine cortices in UHL. However, there was an increase of ReHo in the right anterior insular cortex (rAI), the key node of cognitive control network (CCN) and multimodal sensory integration, as well as in the left parahippocampal cortex (lPHC), a key node in the default mode network (DMN). Moreover, seed-based resting–state functional connectivity analysis showed an enhanced relationship between rAI and several key regions of the DMN. Meanwhile, lPHC showed more negative relationship with components in the CCN and greater positive relationship in the DMN. Such reorganizations of functional connectivity within the DMN and between the DMN and CCN were confirmed by a graph theory analysis. These results suggest that unilateral sensory input damage not only alters the activity of the sensory areas but also reshapes the regional and circuit functional organization of the cognitive control network

    Diurnal Variations in Neural Activity of Healthy Human Brain Decoded with Resting-State Blood Oxygen Level Dependent fMRI

    Get PDF
    It remains an ongoing investigation about how the neural activity alters with the diurnal rhythms in human brain. Resting-state functional magnetic resonance imaging (RS-fMRI) reflects spontaneous activities and/or the endogenous neurophysiological process of the human brain. In the present study, we applied the ReHo (regional homogeneity) and ALFF (amplitude of low frequency fluctuation) based on RS-fMRI to explore the regional differences in the spontaneous cerebral activities throughout the entire brain between the morning and evening sessions within a 24-h time cycle. Wide spread brain areas were found to exhibit diurnal variations, which may be attributed to the internal molecular systems regulated by clock genes, and the environmental factors including light-dark cycle, daily activities and homeostatic sleep drive. Notably, the diurnal variation of default mode network (DMN) suggests that there is an adaptation or compensation response within the subregions of DMN, implying a balance or a decoupling of regulation between these regions.National Natural Science Foundation of China [81371359]; National Basic Research Program of China [2015CB755500]; Basic Research Program of Shenzhen [JCYJ20160429191938883]SCI(E)[email protected]

    Altered resting-state functional activity in posttraumatic stress disorder: A quantitative meta-analysis

    Get PDF
    Many functional neuroimaging studies have reported differential patterns of spontaneous brain activity in posttraumatic stress disorder (PTSD), but the findings are inconsistent and have not so far been quantitatively reviewed. The present study set out to determine consistent, specific regional brain activity alterations in PTSD, using the Effect Size Signed Differential Mapping technique to conduct a quantitative meta-analysis of resting-state functional neuroimaging studies of PTSD that used either a non-trauma (NTC) or a trauma-exposed (TEC) comparison control group. Fifteen functional neuroimaging studies were included, comparing 286 PTSDs, 203 TECs and 155 NTCs. Compared with NTC, PTSD patients showed hyperactivity in the right anterior insula and bilateral cerebellum, and hypoactivity in the dorsal medial prefrontal cortex (mPFC); compared with TEC, PTSD showed hyperactivity in the ventral mPFC. The pooled meta-analysis showed hypoactivity in the posterior insula, superior temporal, and Heschl's gyrus in PTSD. Additionally, subgroup meta-analysis (non-medicated subjects vs. NTC) identified abnormal activation in the prefrontal-limbic system. In meta-regression analyses, mean illness duration was positively associated with activity in the right cerebellum (PTSD vs. NTC), and illness severity was negatively associated with activity in the right lingual gyrus (PTSD vs. TEC)

    Oxytocin Affects the Connectivity of the Precuneus and the Amygdala: A Randomized, Double-Blinded, Placebo-Controlled Neuroimaging Trial

    Get PDF
    BACKGROUND: Although oxytocin is one of the most widely studied neuropeptides in recent times, the mechanistic process by which it modulates social-affective behavior in the brain is not yet clearly understood. Thus, to understand the neurophysiological basis of oxytocin effects, we used resting-state functional MRI to examine the effects of intranasal oxytocin on brain connectivity in healthy males. METHODS: Using a randomized, double-blinded, placebo-controlled, crossover design, 15 healthy male volunteers received 24 IU intranasal oxytocin or placebo prior to resting-state functional MRI acquisition at 3T. RESULTS: We found that oxytocin significantly reduced the degree centrality of the right precuneus (P<.05). Oxytocin also reduced connectivity between the bilateral amygdalae and between the right precuneus and the right and left amygdala (P<.05). Although there were no significant changes in regional homogeneity at the whole brain level, posthoc results showed a reduction involving the right precuneus (P<.05). CONCLUSIONS: These results show that oxytocin affects one of the key centers in the brain for social cognition and introspective processing, the precuneus, and enhances our understanding of how oxytocin can modulate brain networks at rest. An improved understanding of the neurophysiological effects of oxytocin can be important in terms of evaluating the mechanisms that are likely to underlie the clinical responses observed upon long-term oxytocin administration

    Identifying Changes of Functional Brain Networks using Graph Theory

    Get PDF
    This thesis gives an overview on how to estimate changes in functional brain networks using graph theoretical measures. It explains the assessment and definition of functional brain networks derived from fMRI data. More explicitly, this thesis provides examples and newly developed methods on the measurement and visualization of changes due to pathology, external electrical stimulation or ongoing internal thought processes. These changes can occur on long as well as on short time scales and might be a key to understanding brain pathologies and their development. Furthermore, this thesis describes new methods to investigate and visualize these changes on both time scales and provides a more complete picture of the brain as a dynamic and constantly changing network.:1 Introduction 1.1 General Introduction 1.2 Functional Magnetic Resonance Imaging 1.3 Resting-state fMRI 1.4 Brain Networks and Graph Theory 1.5 White-Matter Lesions and Small Vessel Disease 1.6 Transcranial Direct Current Stimulation 1.7 Dynamic Functional Connectivity 2 Publications 2.1 Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity 2.2 Early small vessel disease affects fronto-parietal and cerebellar hubs in close correlation with clinical symptoms - A resting-state fMRI study 2.3 Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation 2.4 Three-dimensional mean-shift edge bundling for the visualization of functional connectivity in the brain 2.5 Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI 3 Summary 4 Bibliography 5. Appendix 5.1 Erklärung über die eigenständige Abfassung der Arbeit 5.2 Curriculum vitae 5.3 Publications 5.4 Acknowledgement
    corecore