6,301 research outputs found

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Analog-Digital System Modeling for Electromagnetic Susceptibility Prediction

    Get PDF
    The thesis is focused on the noise susceptibility of communication networks. These analog-mixed signal systems operate in an electrically noisy environment, in presence of multiple equipments connected by means of long wiring. Every module communicates using a transceiver as an interface between the local digital signaling and the data transmission through the network. Hence, the performance of the IC transceiver when affected by disturbances is one of the main factors that guarantees the EM immunity of the whole equipment. The susceptibility to RF and transient disturbances is addressed at component level on a CAN transceiver as a test case, highlighting the IC features critical for noise immunity. A novel procedure is proposed for the IC modeling for mixed-signal immunity simulations of communication networks. The procedure is based on a gray-box approach, modeling IC ports with a physical circuit and the internal links with a behavioural block. The parameters are estimated from time and frequency domain measurements, allowing accurate and efficient reproduction of non-linear device switching behaviours. The effectiveness of the modeling process is verified by applying the proposed technique to a CAN transceiver, involved in a real immunity test on a data communication link. The obtained model is successfully implemented in a commercial solver to predict both the functional signals and the RF noise immunity at component level. The noise immunity at system level is then evaluated on a complete communication network, analyzing the results of several tests on a realistic CAN bus. After developing models for wires and injection probes, a noise immunity test in avionic environment is carried out in a simulation environment, observing good overall accuracy and efficiency

    Time domain analysis of switching transient fields in high voltage substations

    Get PDF
    Switching operations of circuit breakers and disconnect switches generate transient currents propagating along the substation busbars. At the moment of switching, the busbars temporarily acts as antennae radiating transient electromagnetic fields within the substations. The radiated fields may interfere and disrupt normal operations of electronic equipment used within the substation for measurement, control and communication purposes. Hence there is the need to fully characterise the substation electromagnetic environment as early as the design stage of substation planning and operation to ensure safe operations of the electronic equipment. This paper deals with the computation of transient electromagnetic fields due to switching within a high voltage air-insulated substation (AIS) using the finite difference time domain (FDTD) metho

    Safety-Critical Communication in Avionics

    Get PDF
    The aircraft of today use electrical fly-by-wire systems for manoeuvring. These safety-critical distributed systems are called flight control systems and put high requirements on the communication networks that interconnect the parts of the systems. Reliability, predictability, flexibility, low weight and cost are important factors that all need to be taken in to consideration when designing a safety-critical communication system. In this thesis certification issues, requirements in avionics, fault management, protocols and topologies for safety-critical communication systems in avionics are discussed and investigated. The protocols that are investigated in this thesis are: TTP/C, FlexRay and AFDX, as a reference protocol MIL-STD-1553 is used. As reference architecture analogue point-to-point is used. The protocols are described and evaluated regarding features such as services, maturity, supported physical layers and topologies.Pros and cons with each protocol are then illustrated by a theoretical implementation of a flight control system that uses each protocol for the highly critical communication between sensors, actuators and flight computers.The results show that from a theoretical point of view TTP/C could be used as a replacement for a point-to-point flight control system. However, there are a number of issues regarding the physical layer that needs to be examined. Finally a TTP/C cluster has been implemented and basic functionality tests have been conducted. The plan was to perform tests on delays, start-up time and reintegration time but the time to acquire the proper hardware for these tests exceeded the time for the thesis work. More advanced testing will be continued here at Saab beyond the time frame of this thesis

    Conceptual design and analysis of a large antenna utilizing electrostatic membrane management

    Get PDF
    Conceptual designs and associated technologies for deployment 100 m class radiometer antennas were developed. An electrostatically suspended and controlled membrane mirror and the supporting structure are discussed. The integrated spacecraft including STS cargo bay stowage and development were analyzed. An antenna performance evaluation was performed as a measure of the quality of the membrane/spacecraft when used as a radiometer in the 1 GHz to 5 GHz region. Several related LSS structural dynamic models differing by their stiffness property (and therefore, lowest modal frequencies) are reported. Control system whose complexity varies inversely with increasing modal frequency regimes are also reported. Interactive computer-aided-design software is discussed
    corecore