1,478 research outputs found

    Seeding with Costly Network Information

    Full text link
    We study the task of selecting kk nodes in a social network of size nn, to seed a diffusion with maximum expected spread size, under the independent cascade model with cascade probability pp. Most of the previous work on this problem (known as influence maximization) focuses on efficient algorithms to approximate the optimal seed set with provable guarantees, given the knowledge of the entire network. However, in practice, obtaining full knowledge of the network is very costly. To address this gap, we first study the achievable guarantees using o(n)o(n) influence samples. We provide an approximation algorithm with a tight (1-1/e){\mbox{OPT}}-\epsilon n guarantee, using Oϵ(k2logn)O_{\epsilon}(k^2\log n) influence samples and show that this dependence on kk is asymptotically optimal. We then propose a probing algorithm that queries Oϵ(pn2log4n+kpn1.5log5.5n+knlog3.5n){O}_{\epsilon}(p n^2\log^4 n + \sqrt{k p} n^{1.5}\log^{5.5} n + k n\log^{3.5}{n}) edges from the graph and use them to find a seed set with the same almost tight approximation guarantee. We also provide a matching (up to logarithmic factors) lower-bound on the required number of edges. To address the dependence of our probing algorithm on the independent cascade probability pp, we show that it is impossible to maintain the same approximation guarantees by controlling the discrepancy between the probing and seeding cascade probabilities. Instead, we propose to down-sample the probed edges to match the seeding cascade probability, provided that it does not exceed that of probing. Finally, we test our algorithms on real world data to quantify the trade-off between the cost of obtaining more refined network information and the benefit of the added information for guiding improved seeding strategies

    Infection Spreading and Source Identification: A Hide and Seek Game

    Full text link
    The goal of an infection source node (e.g., a rumor or computer virus source) in a network is to spread its infection to as many nodes as possible, while remaining hidden from the network administrator. On the other hand, the network administrator aims to identify the source node based on knowledge of which nodes have been infected. We model the infection spreading and source identification problem as a strategic game, where the infection source and the network administrator are the two players. As the Jordan center estimator is a minimax source estimator that has been shown to be robust in recent works, we assume that the network administrator utilizes a source estimation strategy that can probe any nodes within a given radius of the Jordan center. Given any estimation strategy, we design a best-response infection strategy for the source. Given any infection strategy, we design a best-response estimation strategy for the network administrator. We derive conditions under which a Nash equilibrium of the strategic game exists. Simulations in both synthetic and real-world networks demonstrate that our proposed infection strategy infects more nodes while maintaining the same safety margin between the true source node and the Jordan center source estimator

    Influence Maximization in Social Networks: A Survey

    Full text link
    Online social networks have become an important platform for people to communicate, share knowledge and disseminate information. Given the widespread usage of social media, individuals' ideas, preferences and behavior are often influenced by their peers or friends in the social networks that they participate in. Since the last decade, influence maximization (IM) problem has been extensively adopted to model the diffusion of innovations and ideas. The purpose of IM is to select a set of k seed nodes who can influence the most individuals in the network. In this survey, we present a systematical study over the researches and future directions with respect to IM problem. We review the information diffusion models and analyze a variety of algorithms for the classic IM algorithms. We propose a taxonomy for potential readers to understand the key techniques and challenges. We also organize the milestone works in time order such that the readers of this survey can experience the research roadmap in this field. Moreover, we also categorize other application-oriented IM studies and correspondingly study each of them. What's more, we list a series of open questions as the future directions for IM-related researches, where a potential reader of this survey can easily observe what should be done next in this field

    Big Networks: Analysis and Optimal Control

    Get PDF
    The study of networks has seen a tremendous breed of researches due to the explosive spectrum of practical problems that involve networks as the access point. Those problems widely range from detecting functionally correlated proteins in biology to finding people to give discounts and gain maximum popularity of a product in economics. Thus, understanding and further being able to manipulate/control the development and evolution of the networks become critical tasks for network scientists. Despite the vast research effort putting towards these studies, the present state-of-the-arts largely either lack of high quality solutions or require excessive amount of time in real-world `Big Data\u27 requirement. This research aims at affirmatively boosting the modern algorithmic efficiency to approach practical requirements. That is developing a ground-breaking class of algorithms that provide simultaneously both provably good solution qualities and low time and space complexities. Specifically, I target the important yet challenging problems in the three main areas: Information Diffusion: Analyzing and maximizing the influence in networks and extending results for different variations of the problems. Community Detection: Finding communities from multiple sources of information. Security and Privacy: Assessing organization vulnerability under targeted-cyber attacks via social networks
    corecore