197,505 research outputs found

    Time-Dependent Influence Measurement in Citation Networks

    Get PDF
    In every scientific discipline, researchers face two common dilemmas: where to find bleeding-edge papers and where to publish their own articles. We propose to answer these questions by looking at the influence between communities, e.g. conferences or journals. The influential conferences are those which papers are heavily cited by other conferences, i.e. they are visible, significant and inspiring. For the task of finding such influential places-to-publish, we introduce a Running Influence model that aims to discover pairwise influence between communities and evaluate the overall influence of each considered community. We have taken into consideration time aspects such as intensity of papers citations over time and difference of conferences starting years. The community influence analysis is tested on real-world data of Computer Science conferences

    Predicting Scientific Success Based on Coauthorship Networks

    Full text link
    We address the question to what extent the success of scientific articles is due to social influence. Analyzing a data set of over 100000 publications from the field of Computer Science, we study how centrality in the coauthorship network differs between authors who have highly cited papers and those who do not. We further show that a machine learning classifier, based only on coauthorship network centrality measures at time of publication, is able to predict with high precision whether an article will be highly cited five years after publication. By this we provide quantitative insight into the social dimension of scientific publishing - challenging the perception of citations as an objective, socially unbiased measure of scientific success.Comment: 21 pages, 2 figures, incl. Supplementary Materia

    Centrality Metric for Dynamic Networks

    Full text link
    Centrality is an important notion in network analysis and is used to measure the degree to which network structure contributes to the importance of a node in a network. While many different centrality measures exist, most of them apply to static networks. Most networks, on the other hand, are dynamic in nature, evolving over time through the addition or deletion of nodes and edges. A popular approach to analyzing such networks represents them by a static network that aggregates all edges observed over some time period. This approach, however, under or overestimates centrality of some nodes. We address this problem by introducing a novel centrality metric for dynamic network analysis. This metric exploits an intuition that in order for one node in a dynamic network to influence another over some period of time, there must exist a path that connects the source and destination nodes through intermediaries at different times. We demonstrate on an example network that the proposed metric leads to a very different ranking than analysis of an equivalent static network. We use dynamic centrality to study a dynamic citations network and contrast results to those reached by static network analysis.Comment: in KDD workshop on Mining and Learning in Graphs (MLG
    corecore