11,013 research outputs found

    Validating Network Value of Influencers by means of Explanations

    Full text link
    Recently, there has been significant interest in social influence analysis. One of the central problems in this area is the problem of identifying influencers, such that by convincing these users to perform a certain action (like buying a new product), a large number of other users get influenced to follow the action. The client of such an application is a marketer who would target these influencers for marketing a given new product, say by providing free samples or discounts. It is natural that before committing resources for targeting an influencer the marketer would be interested in validating the influence (or network value) of influencers returned. This requires digging deeper into such analytical questions as: who are their followers, on what actions (or products) they are influential, etc. However, the current approaches to identifying influencers largely work as a black box in this respect. The goal of this paper is to open up the black box, address these questions and provide informative and crisp explanations for validating the network value of influencers. We formulate the problem of providing explanations (called PROXI) as a discrete optimization problem of feature selection. We show that PROXI is not only NP-hard to solve exactly, it is NP-hard to approximate within any reasonable factor. Nevertheless, we show interesting properties of the objective function and develop an intuitive greedy heuristic. We perform detailed experimental analysis on two real world datasets - Twitter and Flixster, and show that our approach is useful in generating concise and insightful explanations of the influence distribution of users and that our greedy algorithm is effective and efficient with respect to several baselines

    Seeding with Costly Network Information

    Full text link
    We study the task of selecting kk nodes in a social network of size nn, to seed a diffusion with maximum expected spread size, under the independent cascade model with cascade probability pp. Most of the previous work on this problem (known as influence maximization) focuses on efficient algorithms to approximate the optimal seed set with provable guarantees, given the knowledge of the entire network. However, in practice, obtaining full knowledge of the network is very costly. To address this gap, we first study the achievable guarantees using o(n)o(n) influence samples. We provide an approximation algorithm with a tight (1-1/e){\mbox{OPT}}-\epsilon n guarantee, using Oϵ(k2logn)O_{\epsilon}(k^2\log n) influence samples and show that this dependence on kk is asymptotically optimal. We then propose a probing algorithm that queries Oϵ(pn2log4n+kpn1.5log5.5n+knlog3.5n){O}_{\epsilon}(p n^2\log^4 n + \sqrt{k p} n^{1.5}\log^{5.5} n + k n\log^{3.5}{n}) edges from the graph and use them to find a seed set with the same almost tight approximation guarantee. We also provide a matching (up to logarithmic factors) lower-bound on the required number of edges. To address the dependence of our probing algorithm on the independent cascade probability pp, we show that it is impossible to maintain the same approximation guarantees by controlling the discrepancy between the probing and seeding cascade probabilities. Instead, we propose to down-sample the probed edges to match the seeding cascade probability, provided that it does not exceed that of probing. Finally, we test our algorithms on real world data to quantify the trade-off between the cost of obtaining more refined network information and the benefit of the added information for guiding improved seeding strategies

    Structure of Heterogeneous Networks

    Full text link
    Heterogeneous networks play a key role in the evolution of communities and the decisions individuals make. These networks link different types of entities, for example, people and the events they attend. Network analysis algorithms usually project such networks unto simple graphs composed of entities of a single type. In the process, they conflate relations between entities of different types and loose important structural information. We develop a mathematical framework that can be used to compactly represent and analyze heterogeneous networks that combine multiple entity and link types. We generalize Bonacich centrality, which measures connectivity between nodes by the number of paths between them, to heterogeneous networks and use this measure to study network structure. Specifically, we extend the popular modularity-maximization method for community detection to use this centrality metric. We also rank nodes based on their connectivity to other nodes. One advantage of this centrality metric is that it has a tunable parameter we can use to set the length scale of interactions. By studying how rankings change with this parameter allows us to identify important nodes in the network. We apply the proposed method to analyze the structure of several heterogeneous networks. We show that exploiting additional sources of evidence corresponding to links between, as well as among, different entity types yields new insights into network structure

    Submodular Inference of Diffusion Networks from Multiple Trees

    Full text link
    Diffusion and propagation of information, influence and diseases take place over increasingly larger networks. We observe when a node copies information, makes a decision or becomes infected but networks are often hidden or unobserved. Since networks are highly dynamic, changing and growing rapidly, we only observe a relatively small set of cascades before a network changes significantly. Scalable network inference based on a small cascade set is then necessary for understanding the rapidly evolving dynamics that govern diffusion. In this article, we develop a scalable approximation algorithm with provable near-optimal performance based on submodular maximization which achieves a high accuracy in such scenario, solving an open problem first introduced by Gomez-Rodriguez et al (2010). Experiments on synthetic and real diffusion data show that our algorithm in practice achieves an optimal trade-off between accuracy and running time.Comment: To appear in the 29th International Conference on Machine Learning (ICML), 2012. Website: http://www.stanford.edu/~manuelgr/network-inference-multitree
    corecore