45,427 research outputs found

    edge2vec: Representation learning using edge semantics for biomedical knowledge discovery

    Full text link
    Representation learning provides new and powerful graph analytical approaches and tools for the highly valued data science challenge of mining knowledge graphs. Since previous graph analytical methods have mostly focused on homogeneous graphs, an important current challenge is extending this methodology for richly heterogeneous graphs and knowledge domains. The biomedical sciences are such a domain, reflecting the complexity of biology, with entities such as genes, proteins, drugs, diseases, and phenotypes, and relationships such as gene co-expression, biochemical regulation, and biomolecular inhibition or activation. Therefore, the semantics of edges and nodes are critical for representation learning and knowledge discovery in real world biomedical problems. In this paper, we propose the edge2vec model, which represents graphs considering edge semantics. An edge-type transition matrix is trained by an Expectation-Maximization approach, and a stochastic gradient descent model is employed to learn node embedding on a heterogeneous graph via the trained transition matrix. edge2vec is validated on three biomedical domain tasks: biomedical entity classification, compound-gene bioactivity prediction, and biomedical information retrieval. Results show that by considering edge-types into node embedding learning in heterogeneous graphs, \textbf{edge2vec}\ significantly outperforms state-of-the-art models on all three tasks. We propose this method for its added value relative to existing graph analytical methodology, and in the real world context of biomedical knowledge discovery applicability.Comment: 10 page

    Learning user-specific latent influence and susceptibility from information cascades

    Full text link
    Predicting cascade dynamics has important implications for understanding information propagation and launching viral marketing. Previous works mainly adopt a pair-wise manner, modeling the propagation probability between pairs of users using n^2 independent parameters for n users. Consequently, these models suffer from severe overfitting problem, specially for pairs of users without direct interactions, limiting their prediction accuracy. Here we propose to model the cascade dynamics by learning two low-dimensional user-specific vectors from observed cascades, capturing their influence and susceptibility respectively. This model requires much less parameters and thus could combat overfitting problem. Moreover, this model could naturally model context-dependent factors like cumulative effect in information propagation. Extensive experiments on synthetic dataset and a large-scale microblogging dataset demonstrate that this model outperforms the existing pair-wise models at predicting cascade dynamics, cascade size, and "who will be retweeted".Comment: from The 29th AAAI Conference on Artificial Intelligence (AAAI-2015

    Adaptive Submodular Influence Maximization with Myopic Feedback

    Full text link
    This paper examines the problem of adaptive influence maximization in social networks. As adaptive decision making is a time-critical task, a realistic feedback model has been considered, called myopic. In this direction, we propose the myopic adaptive greedy policy that is guaranteed to provide a (1 - 1/e)-approximation of the optimal policy under a variant of the independent cascade diffusion model. This strategy maximizes an alternative utility function that has been proven to be adaptive monotone and adaptive submodular. The proposed utility function considers the cumulative number of active nodes through the time, instead of the total number of the active nodes at the end of the diffusion. Our empirical analysis on real-world social networks reveals the benefits of the proposed myopic strategy, validating our theoretical results.Comment: Accepted by IEEE/ACM International Conference Advances in Social Networks Analysis and Mining (ASONAM), 201

    Optimizing an Organized Modularity Measure for Topographic Graph Clustering: a Deterministic Annealing Approach

    Full text link
    This paper proposes an organized generalization of Newman and Girvan's modularity measure for graph clustering. Optimized via a deterministic annealing scheme, this measure produces topologically ordered graph clusterings that lead to faithful and readable graph representations based on clustering induced graphs. Topographic graph clustering provides an alternative to more classical solutions in which a standard graph clustering method is applied to build a simpler graph that is then represented with a graph layout algorithm. A comparative study on four real world graphs ranging from 34 to 1 133 vertices shows the interest of the proposed approach with respect to classical solutions and to self-organizing maps for graphs
    • …
    corecore