35,863 research outputs found

    On Counting Triangles through Edge Sampling in Large Dynamic Graphs

    Full text link
    Traditional frameworks for dynamic graphs have relied on processing only the stream of edges added into or deleted from an evolving graph, but not any additional related information such as the degrees or neighbor lists of nodes incident to the edges. In this paper, we propose a new edge sampling framework for big-graph analytics in dynamic graphs which enhances the traditional model by enabling the use of additional related information. To demonstrate the advantages of this framework, we present a new sampling algorithm, called Edge Sample and Discard (ESD). It generates an unbiased estimate of the total number of triangles, which can be continuously updated in response to both edge additions and deletions. We provide a comparative analysis of the performance of ESD against two current state-of-the-art algorithms in terms of accuracy and complexity. The results of the experiments performed on real graphs show that, with the help of the neighborhood information of the sampled edges, the accuracy achieved by our algorithm is substantially better. We also characterize the impact of properties of the graph on the performance of our algorithm by testing on several Barabasi-Albert graphs.Comment: A short version of this article appeared in Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2017

    CryptGraph: Privacy Preserving Graph Analytics on Encrypted Graph

    Full text link
    Many graph mining and analysis services have been deployed on the cloud, which can alleviate users from the burden of implementing and maintaining graph algorithms. However, putting graph analytics on the cloud can invade users' privacy. To solve this problem, we propose CryptGraph, which runs graph analytics on encrypted graph to preserve the privacy of both users' graph data and the analytic results. In CryptGraph, users encrypt their graphs before uploading them to the cloud. The cloud runs graph analysis on the encrypted graphs and obtains results which are also in encrypted form that the cloud cannot decipher. During the process of computing, the encrypted graphs are never decrypted on the cloud side. The encrypted results are sent back to users and users perform the decryption to obtain the plaintext results. In this process, users' graphs and the analytics results are both encrypted and the cloud knows neither of them. Thereby, users' privacy can be strongly protected. Meanwhile, with the help of homomorphic encryption, the results analyzed from the encrypted graphs are guaranteed to be correct. In this paper, we present how to encrypt a graph using homomorphic encryption and how to query the structure of an encrypted graph by computing polynomials. To solve the problem that certain operations are not executable on encrypted graphs, we propose hard computation outsourcing to seek help from users. Using two graph algorithms as examples, we show how to apply our methods to perform analytics on encrypted graphs. Experiments on two datasets demonstrate the correctness and feasibility of our methods

    Dynamic Influence Networks for Rule-based Models

    Get PDF
    We introduce the Dynamic Influence Network (DIN), a novel visual analytics technique for representing and analyzing rule-based models of protein-protein interaction networks. Rule-based modeling has proved instrumental in developing biological models that are concise, comprehensible, easily extensible, and that mitigate the combinatorial complexity of multi-state and multi-component biological molecules. Our technique visualizes the dynamics of these rules as they evolve over time. Using the data produced by KaSim, an open source stochastic simulator of rule-based models written in the Kappa language, DINs provide a node-link diagram that represents the influence that each rule has on the other rules. That is, rather than representing individual biological components or types, we instead represent the rules about them (as nodes) and the current influence of these rules (as links). Using our interactive DIN-Viz software tool, researchers are able to query this dynamic network to find meaningful patterns about biological processes, and to identify salient aspects of complex rule-based models. To evaluate the effectiveness of our approach, we investigate a simulation of a circadian clock model that illustrates the oscillatory behavior of the KaiC protein phosphorylation cycle.Comment: Accepted to TVCG, in pres
    • …
    corecore