30 research outputs found

    Multi-agent pathfinding for unmanned aerial vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs), commonly known as drones, have become more and more prevalent in recent years. In particular, governmental organizations and companies around the world are starting to research how UAVs can be used to perform tasks such as package deliver, disaster investigation and surveillance of key assets such as pipelines, railroads and bridges. NASA is currently in the early stages of developing an air traffic control system specifically designed to manage UAV operations in low-altitude airspace. Companies such as Amazon and Rakuten are testing large-scale drone deliver services in the USA and Japan. To perform these tasks, safe and conflict-free routes for concurrently operating UAVs must be found. This can be done using multi-agent pathfinding (mapf) algorithms, although the correct choice of algorithms is not clear. This is because many state of the art mapf algorithms have only been tested in 2D space in maps with many obstacles, while UAVs operate in 3D space in open maps with few obstacles. In addition, when an unexpected event occurs in the airspace and UAVs are forced to deviate from their original routes while inflight, new conflict-free routes must be found. Planning for these unexpected events is commonly known as contingency planning. With manned aircraft, contingency plans can be created in advance or on a case-by-case basis while inflight. The scale at which UAVs operate, combined with the fact that unexpected events may occur anywhere at any time make both advanced planning and planning on a case-by-case basis impossible. Thus, a new approach is needed. Online multi-agent pathfinding (online mapf) looks to be a promising solution. Online mapf utilizes traditional mapf algorithms to perform path planning in real-time. That is, new routes for UAVs are found while inflight. The primary contribution of this thesis is to present one possible approach to UAV contingency planning using online multi-agent pathfinding algorithms, which can be used as a baseline for future research and development. It also provides an in-depth overview and analysis of offline mapf algorithms with the goal of determining which ones are likely to perform best when applied to UAVs. Finally, to further this same goal, a few different mapf algorithms are experimentally tested and analyzed

    Accessibility Design and Operational Considerations in the Development of Urban Aerial Mobility Vehicles and Networks

    Get PDF
    Urban aerial mobility vehicles and networks have recently gained considerable interest in the aviation community. These small, short-range vehicles with all-electric or hybrid-electric propulsion systems, tailored to metropolitan aerial transportation needs, promise to radically change passenger mobility and cargo distribution in cities. Accessibility issues have not been a major consideration in UAM vehicle and network discussions to date. This paper seeks to help change that

    Airspace Integration of New Entrants and Safety Risk Management Models

    Get PDF
    In recent years, the demand for airspace access of Unmanned Aerial Systems (UAS) increased significantly and is continuously increasing for different altitude-types UAS. A similar evolution is expected from Commercial Space Operations (CSO) in the next years. These aviation/aerospace systems will need to be seamlessly integrated into the National Airspace System (NAS), at their operational altitude levels, and accounted for from all perspectives, including proactively addressing their safety hazards. This thesis captures the requirements for the new entrants’ integration, and then identifies and analyzes the safety risks added to the NAS operations by its new entrants, the future omnipresent UAS on different NAS levels, and the coming CSO age. Methodologies such as Functional Hazard Analysis, Subsystem and System Hazard Analysis, and Safety Risk Management are explored and integrated into the airspace new entrants’ framework and models. In addition, techniques such as state-machine modeling and simulation are used on an identified use case of UAS operations in crowded airspace

    Investigation of Strategic Deployment Opportunities for Unmanned Aerial Systems (UAS) at INDOT

    Get PDF
    Unmanned aerial systems (UAS) are increasingly used for a variety of applications related to INDOT’s mission including bridge inspection, traffic management, incident response, construction and roadway mapping. UAS have the potential to reduce costs and increase capabilities. Other state DOTs and transportation agencies have deployed UAS for an increasing number of applications due to technology advances that provide increased capabilities and lower costs, resulting from regulatory changes that simplified operations for small UAS under 55 pounds (aka, sUAS). This document provides an overview of UAS applications that may be appropriate for INDOT, as well as a description of the regulations that affect UAS operation as described in 14 CFR Part 107. The potential applications were prioritized using Quality Function Deployment (QFD), a methodology used in the aerospace industry that clearly communicates qualitative and ambiguous information with a transparent framework for decision making. The factors considered included technical feasibility, ease of adoption and stakeholder acceptance, activities underway at INDOT, and contribution to INDOT mission and goals. Dozens of interviews with INDOT personnel and stakeholders were held to get an accurate and varied perspective of potential for UAVs at INDOT. The initial prioritization was completed in early 2019 and identified three key areas: UAS for bridge inspection safety as a part of regular operations, UAS for construction with deliverables provided via construction contracts, and UAS for emergency management. Descriptions of current practices and opportunities for INDOT are provided for each of these applications. An estimate of the benefits and costs is identified, based on findings from other agencies as well as projections for INDOT. A benefit cost analysis for the application of UAS for bridge inspection safety suggests a benefit cost over one for the analysis period

    Multi-Objective UAV Mission Planning Using Evolutionary Computation

    Get PDF
    This investigation purports to develop a new model for multiple autonomous aircraft mission routing. Previous research both related and unrelated to this endeavor have used classic combinatoric problems as models for Unmanned Aerial Vehicle (UAV) routing and mission planning. This document presents the concept of the Swarm Routing Problem (SRP) as a new combinatorics problem for use in modeling UAV swarm routing, developed as a variant of the Vehicle Routing Problem with Time Windows (VRPTW). The SRP removes the single vehicle per target restraint and changes the customer satisfaction requirement to one of vehicle on location volume. The impact of these alterations changes the vehicle definitions within the problem model from discrete units to cooperative members within a swarm. This represents a more realistic model for multi-agent routing as a real world mission plan would require the use of all airborne assets across multiple targets, without constraining a single vehicle to a single target. Solutions to the SRP problem model result in route assignments per vehicle that successfully track to all targets, on time, within distance constraints. A complexity analysis and multi-objective formulation of the VRPTW indicates the necessity of a stochastic solution approach leading to the development of a multi-objective evolutionary algorithm. This algorithm design is implemented using C++ and an evolutionary algorithm library called Open Beagle. Benchmark problems applied to the VRPTW show the usefulness of this solution approach. A full problem definition of the SRP as well as a multi-objective formulation parallels that of the VRPTW method. Benchmark problems for the VRPTW are modified in order to create SRP benchmarks. These solutions show the SRP solution is comparable or better than the same VRPTW solutions, while also representing a more realistic UAV swarm routing solution

    Aeronautics and space report of the President, 1982 activities

    Get PDF
    Achievements of the space program are summerized in the area of communication, Earth resources, environment, space sciences, transportation, aeronautics, and space energy. Space program activities of the various deprtments and agencies of the Federal Government are discussed in relation to the agencies' goals and policies. Records of U.S. and world spacecraft launchings, successful U.S. launches for 1982, U.S. launched applications and scientific satellites and space probes since 1975, U.S. and Soviet manned spaceflights since 1961, data on U.S. space launch vehicles, and budget summaries are provided. The national space policy and the aeronautical research and technology policy statements are included

    An investigation of change in drone practices in broadacre farming environments

    Get PDF
    The application of drones in broadacre farming is influenced by novel and emergent factors. Drone technology is subject to legal, financial, social, and technical constraints that affect the Agri-tech sector. This research showed that emerging improvements to drone technology influence the analysis of precision data resulting in disparate and asymmetrically flawed Ag-tech outputs. The novelty of this thesis is that it examines the changes in drone technology through the lens of entropic decay. It considers the planning and controlling of an organisation’s resources to minimise harmful effects through systems change. The rapid advances in drone technology have outpaced the systematic approaches that precision agriculture insists is the backbone of reliable ongoing decision-making. Different models and brands take data from different heights, at different times of the day, and with flight of differing velocities. Drone data is in a state of decay, no longer equally comparable to past years’ harvest and crop data and are now mixed into a blended environment of brand-specific variations in height, image resolution, air speed, and optics. This thesis investigates the problem of the rapid emergence of image-capture technology in drones and the corresponding shift away from the established measurements and comparisons used in precision agriculture. New capabilities are applied in an ad hoc manner as different features are rushed to market. At the same time existing practices are subtly changed to suit individual technology capability. The result is a loose collection of technically superior drone imagery, with a corresponding mismatch of year-to-year agricultural data. The challenge is to understand and identify the difference between uniformly accepted technological advance, and market-driven changes that demonstrate entropic decay. The goal of this research is to identify best practice approaches for UAV deployment for broadacre farming. This study investigated the benefits of a range of characteristics to optimise data collection technologies. It identified widespread discrepancies demonstrating broadening decay on precision agriculture and productivity. The pace of drone development is so rapidly different from mainstream agricultural practices that the once reliable reliance upon yearly crop data no longer shares statistically comparable metrics. Whilst farmers have relied upon decades of satellite data that has used the same optics, time of day and flight paths for many years, the innovations that drive increasingly smarter drone technologies are also highly problematic since they render each successive past year’s crop metrics as outdated in terms of sophistication, detail, and accuracy. In five years, the standardised height for recording crop data has changed four times. New innovations, coupled with new rules and regulations have altered the once reliable practice of recording crop data. In addition, the cost of entry in adopting new drone technology is sufficiently varied that agriculturalists are acquiring multiple versions of different drone UAVs with variable camera and sensor settings, and vastly different approaches in terms of flight records, data management, and recorded indices. Without addressing this problem, the true benefits of optimization through machine learning are prevented from improving harvest outcomes for broadacre farming. The key findings of this research reveal a complex, constantly morphing environment that is seeking to build digital trust and reliability in an evolving global market in the face of rapidly changing technology, regulations, standards, networks, and knowledge. The once reliable discipline of precision agriculture is now a fractured melting pot of “first to market” innovations and highly competitive sellers. The future of drone technology is destined for further uncertainty as it struggles to establish a level of maturity that can return broadacre farming to consistent global outcomes

    Clear air turbulence

    Get PDF
    Research on forecasting, detection, and incidents of clear air turbulenc

    Aerial Network Assistance Systems for Post-Disaster Scenarios : Topology Monitoring and Communication Support in Infrastructure-Independent Networks

    Get PDF
    Communication anytime and anywhere is necessary for our modern society to function. However, the critical network infrastructure quickly fails in the face of a disaster and leaves the affected population without means of communication. This lack can be overcome by smartphone-based emergency communication systems, based on infrastructure-independent networks like Delay-Tolerant Networks (DTNs). DTNs, however, suffer from short device-to-device link distances and, thus, require multi-hop routing or data ferries between disjunct parts of the network. In disaster scenarios, this fragmentation is particularly severe because of the highly clustered human mobility behavior. Nevertheless, aerial communication support systems can connect local network clusters by utilizing Unmanned Aerial Vehicles (UAVs) as data ferries. To facilitate situation-aware and adaptive communication support, knowledge of the network topology, the identification of missing communication links, and the constant reassessment of dynamic disasters are required. These requirements are usually neglected, despite existing approaches to aerial monitoring systems capable of detecting devices and networks. In this dissertation, we, therefore, facilitate the coexistence of aerial topology monitoring and communications support mechanisms in an autonomous Aerial Network Assistance System for infrastructure-independent networks as our first contribution. To enable system adaptations to unknown and dynamic disaster situations, our second contribution addresses the collection, processing, and utilization of topology information. For one thing, we introduce cooperative monitoring approaches to include the DTN in the monitoring process. Furthermore, we apply novel approaches for data aggregation and network cluster estimation to facilitate the continuous assessment of topology information and an appropriate system adaptation. Based on this, we introduce an adaptive topology-aware routing approach to reroute UAVs and increase the coverage of disconnected nodes outside clusters. We generalize our contributions by integrating them into a simulation framework, creating an evaluation platform for autonomous aerial systems as our third contribution. We further increase the expressiveness of our aerial system evaluation, by adding movement models for multicopter aircraft combined with power consumption models based on real-world measurements. Additionally, we improve the disaster simulation by generalizing civilian disaster mobility based on a real-world field test. With a prototypical system implementation, we extensively evaluate our contributions and show the significant benefits of cooperative monitoring and topology-aware routing, respectively. We highlight the importance of continuous and integrated topology monitoring for aerial communications support and demonstrate its necessity for an adaptive and long-term disaster deployment. In conclusion, the contributions of this dissertation enable the usage of autonomous Aerial Network Assistance Systems and their adaptability in dynamic disaster scenarios

    Reliable Navigation for SUAS in Complex Indoor Environments

    Get PDF
    Indoor environments are a particular challenge for Unmanned Aerial Vehicles (UAVs). Effective navigation through these GPS-denied environments require alternative localization systems, as well as methods of sensing and avoiding obstacles while remaining on-task. Additionally, the relatively small clearances and human presence characteristic of indoor spaces necessitates a higher level of precision and adaptability than is common in traditional UAV flight planning and execution. This research blends the optimization of individual technologies, such as state estimation and environmental sensing, with system integration and high-level operational planning. The combination of AprilTag visual markers, multi-camera Visual Odometry, and IMU data can be used to create a robust state estimator that describes position, velocity, and rotation of a multicopter within an indoor environment. However these data sources have unique, nonlinear characteristics that should be understood to effectively plan for their usage in an automated environment. The research described herein begins by analyzing the unique characteristics of these data streams in order to create a highly-accurate, fault-tolerant state estimator. Upon this foundation, the system built, tested, and described herein uses Visual Markers as navigation anchors, visual odometry for motion estimation and control, and then uses depth sensors to maintain an up-to-date map of the UAV\u27s immediate surroundings. It develops and continually refines navigable routes through a novel combination of pre-defined and sensory environmental data. Emphasis is put on the real-world development and testing of the system, through discussion of computational resource management and risk reduction
    corecore