203 research outputs found

    Infinitely many cyclic solutions to the Hamilton-Waterloo problem with odd length cycles

    Full text link
    It is conjectured that for every pair (,m)(\ell,m) of odd integers greater than 2 with m1  (mod)m \equiv 1\; \pmod{\ell}, there exists a cyclic two-factorization of KmK_{\ell m} having exactly (m1)/2(m-1)/2 factors of type m\ell^m and all the others of type mm^{\ell}. The authors prove the conjecture in the affirmative when 1  (mod4)\ell \equiv 1\; \pmod{4} and m2+1m \geq \ell^2 -\ell + 1.Comment: 31 page

    The Hamilton-Waterloo Problem with even cycle lengths

    Full text link
    The Hamilton-Waterloo Problem HWP(v;m,n;α,β)(v;m,n;\alpha,\beta) asks for a 2-factorization of the complete graph KvK_v or KvIK_v-I, the complete graph with the edges of a 1-factor removed, into α\alpha CmC_m-factors and β\beta CnC_n-factors, where 3m<n3 \leq m < n. In the case that mm and nn are both even, the problem has been solved except possibly when 1{α,β}1 \in \{\alpha,\beta\} or when α\alpha and β\beta are both odd, in which case necessarily v2(mod4)v \equiv 2 \pmod{4}. In this paper, we develop a new construction that creates factorizations with larger cycles from existing factorizations under certain conditions. This construction enables us to show that there is a solution to HWP(v;2m,2n;α,β)(v;2m,2n;\alpha,\beta) for odd α\alpha and β\beta whenever the obvious necessary conditions hold, except possibly if β=1\beta=1; β=3\beta=3 and gcd(m,n)=1\gcd(m,n)=1; α=1\alpha=1; or v=2mn/gcd(m,n)v=2mn/\gcd(m,n). This result almost completely settles the existence problem for even cycles, other than the possible exceptions noted above

    A survey on constructive methods for the Oberwolfach problem and its variants

    Full text link
    The generalized Oberwolfach problem asks for a decomposition of a graph GG into specified 2-regular spanning subgraphs F1,,FkF_1,\ldots, F_k, called factors. The classic Oberwolfach problem corresponds to the case when all of the factors are pairwise isomorphic, and GG is the complete graph of odd order or the complete graph of even order with the edges of a 11-factor removed. When there are two possible factor types, it is called the Hamilton-Waterloo problem. In this paper we present a survey of constructive methods which have allowed recent progress in this area. Specifically, we consider blow-up type constructions, particularly as applied to the case when each factor consists of cycles of the same length. We consider the case when the factors are all bipartite (and hence consist of even cycles) and a method for using circulant graphs to find solutions. We also consider constructions which yield solutions with well-behaved automorphisms.Comment: To be published in the Fields Institute Communications book series. 23 pages, 2 figure

    On the Hamilton-Waterloo problem for bipartite 2-factors

    Get PDF
    Given two 2-regular graphs F1 and F2, both of order n, the Hamilton-Waterloo Problem for F1 and F2 asks for a factorization of the complete graph Kn into a1 copies of F1, a2 copies of F2, and a 1-factor if n is even, for all nonnegative integers a1 and a2 satisfying a1+a2=?n-12?. We settle the Hamilton-Waterloo Problem for all bipartite 2-regular graphs F1 and F2 where F1 can be obtained from F2 by replacing each cycle with a bipartite 2-regular graph of the same order

    Constructing uniform 2-factorizations via row-sum matrices: solutions to the Hamilton-Waterloo problem

    Full text link
    In this paper, we formally introduce the concept of a row-sum matrix over an arbitrary group GG. When GG is cyclic, these types of matrices have been widely used to build uniform 2-factorizations of small Cayley graphs (or, Cayley subgraphs of blown-up cycles), which themselves factorize complete (equipartite) graphs. Here, we construct row-sum matrices over a class of non-abelian groups, the generalized dihedral groups, and we use them to construct uniform 22-factorizations that solve infinitely many open cases of the Hamilton-Waterloo problem, thus filling up large parts of the gaps in the spectrum of orders for which such factorizations are known to exist

    Bipartite 2-factorizations of complete multipartite graphs

    Get PDF
    It is shown that if K is any regular complete multipartite graph of even degree, and F is any bipartite 2-factor of K, then there exists a factorization of K into F; except that there is no factorization of K into F when F is the union of two disjoint 6-cycles

    Resolution of the Oberwolfach problem

    Get PDF
    The Oberwolfach problem, posed by Ringel in 1967, asks for a decomposition of K2n+1K_{2n+1} into edge-disjoint copies of a given 22-factor. We show that this can be achieved for all large nn. We actually prove a significantly more general result, which allows for decompositions into more general types of factors. In particular, this also resolves the Hamilton-Waterloo problem for large nn.Comment: 28 page
    corecore