58,097 research outputs found

    Infinite words containing squares at every position

    Get PDF
    Richomme asked the following question: what is the infimum of the real numbers α > 2 such that there exists an infinite word that avoids α-powers but contains arbitrarily large squares beginning at every position? We resolve this question in the case of a binary alphabet by showing that the answer is α = 7/3.The first author is supported by an NSERC Discovery Grant. The second author is supported by an NSERC Postdoctoral Fellowship.https://www.rairo-ita.org/articles/ita/abs/2010/01/ita09038/ita09038.htm

    Abelian-Square-Rich Words

    Full text link
    An abelian square is the concatenation of two words that are anagrams of one another. A word of length nn can contain at most Θ(n2)\Theta(n^2) distinct factors, and there exist words of length nn containing Θ(n2)\Theta(n^2) distinct abelian-square factors, that is, distinct factors that are abelian squares. This motivates us to study infinite words such that the number of distinct abelian-square factors of length nn grows quadratically with nn. More precisely, we say that an infinite word ww is {\it abelian-square-rich} if, for every nn, every factor of ww of length nn contains, on average, a number of distinct abelian-square factors that is quadratic in nn; and {\it uniformly abelian-square-rich} if every factor of ww contains a number of distinct abelian-square factors that is proportional to the square of its length. Of course, if a word is uniformly abelian-square-rich, then it is abelian-square-rich, but we show that the converse is not true in general. We prove that the Thue-Morse word is uniformly abelian-square-rich and that the function counting the number of distinct abelian-square factors of length 2n2n of the Thue-Morse word is 22-regular. As for Sturmian words, we prove that a Sturmian word sαs_{\alpha} of angle α\alpha is uniformly abelian-square-rich if and only if the irrational α\alpha has bounded partial quotients, that is, if and only if sαs_{\alpha} has bounded exponent.Comment: To appear in Theoretical Computer Science. Corrected a flaw in the proof of Proposition

    Words with the Maximum Number of Abelian Squares

    Full text link
    An abelian square is the concatenation of two words that are anagrams of one another. A word of length nn can contain Θ(n2)\Theta(n^2) distinct factors that are abelian squares. We study infinite words such that the number of abelian square factors of length nn grows quadratically with nn.Comment: To appear in the proceedings of WORDS 201
    • …
    corecore