4,922 research outputs found

    Intersection Graph of a Module

    Full text link
    Let VV be a left RR-module where RR is a (not necessarily commutative) ring with unit. The intersection graph \cG(V) of proper RR-submodules of VV is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper RR-submodules of V,V, and there is an edge between two distinct vertices UU and WW if and only if U∩W≠0.U\cap W\neq 0. We study these graphs to relate the combinatorial properties of \cG(V) to the algebraic properties of the RR-module V.V. We study connectedness, domination, finiteness, coloring, and planarity for \cG (V). For instance, we find the domination number of \cG (V). We also find the chromatic number of \cG(V) in some cases. Furthermore, we study cycles in \cG(V), and complete subgraphs in \cG (V) determining the structure of VV for which \cG(V) is planar

    Uniqueness and non-uniqueness in percolation theory

    Full text link
    This paper is an up-to-date introduction to the problem of uniqueness versus non-uniqueness of infinite clusters for percolation on Zd{\mathbb{Z}}^d and, more generally, on transitive graphs. For iid percolation on Zd{\mathbb{Z}}^d, uniqueness of the infinite cluster is a classical result, while on certain other transitive graphs uniqueness may fail. Key properties of the graphs in this context turn out to be amenability and nonamenability. The same problem is considered for certain dependent percolation models -- most prominently the Fortuin--Kasteleyn random-cluster model -- and in situations where the standard connectivity notion is replaced by entanglement or rigidity. So-called simultaneous uniqueness in couplings of percolation processes is also considered. Some of the main results are proved in detail, while for others the proofs are merely sketched, and for yet others they are omitted. Several open problems are discussed.Comment: Published at http://dx.doi.org/10.1214/154957806000000096 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Contact and voter processes on the infinite percolation cluster as models of host-symbiont interactions

    Full text link
    We introduce spatially explicit stochastic processes to model multispecies host-symbiont interactions. The host environment is static, modeled by the infinite percolation cluster of site percolation. Symbionts evolve on the infinite cluster through contact or voter type interactions, where each host may be infected by a colony of symbionts. In the presence of a single symbiont species, the condition for invasion as a function of the density of the habitat of hosts and the maximal size of the colonies is investigated in details. In the presence of multiple symbiont species, it is proved that the community of symbionts clusters in two dimensions whereas symbiont species may coexist in higher dimensions.Comment: Published in at http://dx.doi.org/10.1214/10-AAP734 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On Weak Odd Domination and Graph-based Quantum Secret Sharing

    Full text link
    A weak odd dominated (WOD) set in a graph is a subset B of vertices for which there exists a distinct set of vertices C such that every vertex in B has an odd number of neighbors in C. We point out the connections of weak odd domination with odd domination, [sigma,rho]-domination, and perfect codes. We introduce bounds on \kappa(G), the maximum size of WOD sets of a graph G, and on \kappa'(G), the minimum size of non WOD sets of G. Moreover, we prove that the corresponding decision problems are NP-complete. The study of weak odd domination is mainly motivated by the design of graph-based quantum secret sharing protocols: a graph G of order n corresponds to a secret sharing protocol which threshold is \kappa_Q(G) = max(\kappa(G), n-\kappa'(G)). These graph-based protocols are very promising in terms of physical implementation, however all such graph-based protocols studied in the literature have quasi-unanimity thresholds (i.e. \kappa_Q(G)=n-o(n) where n is the order of the graph G underlying the protocol). In this paper, we show using probabilistic methods, the existence of graphs with smaller \kappa_Q (i.e. \kappa_Q(G)< 0.811n where n is the order of G). We also prove that deciding for a given graph G whether \kappa_Q(G)< k is NP-complete, which means that one cannot efficiently double check that a graph randomly generated has actually a \kappa_Q smaller than 0.811n.Comment: Subsumes arXiv:1109.6181: Optimal accessing and non-accessing structures for graph protocol

    Spatial preferential attachment networks: Power laws and clustering coefficients

    Get PDF
    We define a class of growing networks in which new nodes are given a spatial position and are connected to existing nodes with a probability mechanism favoring short distances and high degrees. The competition of preferential attachment and spatial clustering gives this model a range of interesting properties. Empirical degree distributions converge to a limit law, which can be a power law with any exponent Ï„>2\tau>2. The average clustering coefficient of the networks converges to a positive limit. Finally, a phase transition occurs in the global clustering coefficients and empirical distribution of edge lengths when the power-law exponent crosses the critical value Ï„=3\tau=3. Our main tool in the proof of these results is a general weak law of large numbers in the spirit of Penrose and Yukich.Comment: Published in at http://dx.doi.org/10.1214/14-AAP1006 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore