2,335 research outputs found

    On the lattice structure of probability spaces in quantum mechanics

    Full text link
    Let C be the set of all possible quantum states. We study the convex subsets of C with attention focused on the lattice theoretical structure of these convex subsets and, as a result, find a framework capable of unifying several aspects of quantum mechanics, including entanglement and Jaynes' Max-Ent principle. We also encounter links with entanglement witnesses, which leads to a new separability criteria expressed in lattice language. We also provide an extension of a separability criteria based on convex polytopes to the infinite dimensional case and show that it reveals interesting facets concerning the geometrical structure of the convex subsets. It is seen that the above mentioned framework is also capable of generalization to any statistical theory via the so-called convex operational models' approach. In particular, we show how to extend the geometrical structure underlying entanglement to any statistical model, an extension which may be useful for studying correlations in different generalizations of quantum mechanics.Comment: arXiv admin note: substantial text overlap with arXiv:1008.416

    An anthology of non-local QFT and QFT on noncommutative spacetime

    Full text link
    Ever since the appearance of renormalization theory there have been several differently motivated attempts at non-localized (in the sense of not generated by point-like fields) relativistic particle theories, the most recent one being at QFT on non-commutative Minkowski spacetime. The often conceptually uncritical and historically forgetful contemporary approach to these problems calls for a critical review the light of previous results on this subject.Comment: 33 pages tci-latex, improvements of formulations, shortening of sentences, addition of some reference

    Localization and the interface between quantum mechanics, quantum field theory and quantum gravity I (The two antagonistic localizations and their asymptotic compatibility)

    Full text link
    It is shown that there are significant conceptual differences between QM and QFT which make it difficult to view the latter as just a relativistic extension of the principles of QM. At the root of this is a fundamental distiction between Born-localization in QM (which in the relativistic context changes its name to Newton-Wigner localization) and modular localization which is the localization underlying QFT, after one separates it from its standard presentation in terms of field coordinates. The first comes with a probability notion and projection operators, whereas the latter describes causal propagation in QFT and leads to thermal aspects of locally reduced finite energy states. The Born-Newton-Wigner localization in QFT is only applicable asymptotically and the covariant correlation between asymptotic in and out localization projectors is the basis of the existence of an invariant scattering matrix. In this first part of a two part essay the modular localization (the intrinsic content of field localization) and its philosophical consequences take the center stage. Important physical consequences of vacuum polarization will be the main topic of part II. Both parts together form a rather comprehensive presentation of known consequences of the two antagonistic localization concepts, including the those of its misunderstandings in string theory.Comment: 63 pages corrections, reformulations, references adde

    Quantum axiomatics and a theorem of M.P. Soler

    Get PDF
    Three of the traditional quantum axioms (orthocomplementation, orthomodularity and the covering law) show incompatibilities with two products introduced by Aerts for the description of joint entities. Inspired by Soler's theorem and Holland's AUG axiom, we propose a property of 'plane transitivity', which also characterizes classical Hilbert spaces among infinite dimensional orthomodular spaces, as a possible partial substitute for the 'defective' axioms.Comment: 5 pages, 0 figure

    New Concepts in Particle Physics from Solution of an Old Problem

    Full text link
    Recent ideas on modular localization in local quantum physics are used to clarify the relation between on- and off-shell quantities in particle physics; in particular the relation between on-shell crossing symmetry and off-shell Einstein causality. Among the collateral results of this new nonperturbative approach are profound relations between crossing symmetry of particle physics and Hawking-Unruh like thermal aspects (KMS property, entropy attached to horizons) of quantum matter behind causal horizons, aspects which hitherto were exclusively related with Killing horizons in curved spacetime rather than with localization aspects in Minkowski space particle physics. The scope of this modular framework is amazingly wide and ranges from providing a conceptual basis for the d=1+1 bootstrap-formfactor program for factorizable d=1+1 models to a decomposition theory of QFT's in terms of a finite collection of unitarily equivalent chiral conformal theories placed a specified relative position within a common Hilbert space (in d=1+1 a holographic relation and in higher dimensions more like a scanning). The new framework gives a spacetime interpretation to the Zamolodchikov-Faddeev algebra and explains its thermal aspects.Comment: In this form it will appear in JPA Math Gen, 47 pages tcilate
    • …
    corecore