382 research outputs found

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Entangled graphs on surfaces in space

    Get PDF
    In the chemical world, as well as the physical, strands get tangled. When those strands form loops, the mathematical discipline of ‘knot theory’ can be used to analyse and describe the resultant tangles. However less has been studied about the situation when the strands branch and form entangled loops in either finite structures or infinite periodic structures. The branches and loops within the structure form a ‘graph’, and can be described by mathematical ‘graph theory’, but when graph theory concerns itself with the way that a graph can fit in space, it typically focuses on the simplest ways of doing so. Graph theory thus provides few tools for understanding graphs that are entangled beyond their simplest spatial configurations. This thesis explores this gap between knot theory and graph theory. It is focussed on the introduction of small amounts of entanglement into finite graphs embedded in space. These graphs are located on surfaces in space, and the surface is chosen to allow a limited amount of complexity. As well as limiting the types of entanglement possible, the surface simplifies the analysis of the problem – reducing a three-dimensional problem to a two-dimensional one. Through much of this thesis, the embedding surface is a torus (the surface of a doughnut) and the graph embedded on the surface is the graph of a polyhedron. Polyhedral graphs can be embedded on a sphere, but the addition of the central hole of the torus allows a certain amount of freedom for the entanglement of the edges of the graph. Entanglements of the five Platonic polyhedra (tetrahedron, octahedron, cube, dodecahedron, icosahedron) are studied in depth through their embeddings on the torus. The structures that are produced in this way are analysed in terms of their component knots and links, as well as their symmetry and energy. It is then shown that all toroidally embedded tangled polyhedral graphs are necessarily chiral, which is an important property in biochemical and other systems. These finite tangled structures can also be used to make tangled infinite periodic nets; planar repeating subgraphs within the net can be systematically replaced with a tangled version, introducing a controlled level of entanglement into the net. Finally, the analysis of entangled structures simply in terms of knots and links is shown to be deficient, as a novel form of tangling can exist which involves neither knots nor links. This new form of entanglement is known as a ravel. Different types of ravels can be localised to the immediate vicinity of a vertex, or can be spread over an arbitrarily large scope within a finite graph or periodic net. These different forms of entanglement are relevant to chemical and biochemical self-assembly, including DNA nanotechnology and metal-ligand complex crystallisation

    Computational Geometric and Algebraic Topology

    Get PDF
    Computational topology is a young, emerging field of mathematics that seeks out practical algorithmic methods for solving complex and fundamental problems in geometry and topology. It draws on a wide variety of techniques from across pure mathematics (including topology, differential geometry, combinatorics, algebra, and discrete geometry), as well as applied mathematics and theoretical computer science. In turn, solutions to these problems have a wide-ranging impact: already they have enabled significant progress in the core area of geometric topology, introduced new methods in applied mathematics, and yielded new insights into the role that topology has to play in fundamental problems surrounding computational complexity. At least three significant branches have emerged in computational topology: algorithmic 3-manifold and knot theory, persistent homology and surfaces and graph embeddings. These branches have emerged largely independently. However, it is clear that they have much to offer each other. The goal of this workshop was to be the first significant step to bring these three areas together, to share ideas in depth, and to pool our expertise in approaching some of the major open problems in the field

    Entropy-Driven Phase Transition in Low-Temperature Antiferromagnetic Potts Models

    Get PDF
    We prove the existence of long-range order at sufficiently low temperatures, including zero temperature, for the three-state Potts antiferromagnet on a class of quasi-transitive plane quadrangulations, including the diced lattice. More precisely, we show the existence of (at least) three infinite-volume Gibbs measures, which exhibit spontaneous magnetization in the sense that vertices in one sublattice have a higher probability to be in one state than in either of the other two states. For the special case of the diced lattice, we give a good rigorous lower bound on this probability, based on computer-assisted calculations that are not available for the other lattices

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    Graphs and networks theory

    Get PDF
    This chapter discusses graphs and networks theory
    • …
    corecore