15,264 research outputs found

    Phylogenetic mixtures and linear invariants for equal input models

    Get PDF
    The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the ‘equal input model’. This model generalizes the ‘Felsenstein 1981’ model (and thereby the Jukes–Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a ‘random cluster’ process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees—the so called ‘model invariants’), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of n=4 leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167–191, 1987).Peer ReviewedPostprint (author's final draft

    msBP: An R package to perform Bayesian nonparametric inference using multiscale Bernstein polynomials mixtures

    Get PDF
    msBP is an R package that implements a new method to perform Bayesian multiscale nonparametric inference introduced by Canale and Dunson (2016). The method, based on mixtures of multiscale beta dictionary densities, overcomes the drawbacks of Pólya trees and inherits many of the advantages of Dirichlet process mixture models. The key idea is that an infinitely-deep binary tree is introduced, with a beta dictionary density assigned to each node of the tree. Using a multiscale stick-breaking characterization, stochastically decreasing weights are assigned to each node. The result is an infinite mixture model. The package msBP implements a series of basic functions to deal with this family of priors such as random densities and numbers generation, creation and manipulation of binary tree objects, and generic functions to plot and print the results. In addition, it implements the Gibbs samplers for posterior computation to perform multiscale density estimation and multiscale testing of group differences described in Canale and Dunson (2016)

    Multiscale Bernstein polynomials for densities

    Full text link
    Our focus is on constructing a multiscale nonparametric prior for densities. The Bayes density estimation literature is dominated by single scale methods, with the exception of Polya trees, which favor overly-spiky densities even when the truth is smooth. We propose a multiscale Bernstein polynomial family of priors, which produce smooth realizations that do not rely on hard partitioning of the support. At each level in an infinitely-deep binary tree, we place a beta dictionary density; within a scale the densities are equivalent to Bernstein polynomials. Using a stick-breaking characterization, stochastically decreasing weights are allocated to the finer scale dictionary elements. A slice sampler is used for posterior computation, and properties are described. The method characterizes densities with locally-varying smoothness, and can produce a sequence of coarse to fine density estimates. An extension for Bayesian testing of group differences is introduced and applied to DNA methylation array data

    Fast Non-Parametric Bayesian Inference on Infinite Trees

    Get PDF
    Given i.i.d. data from an unknown distribution, we consider the problem of predicting future items. An adaptive way to estimate the probability density is to recursively subdivide the domain to an appropriate data-dependent granularity. A Bayesian would assign a data-independent prior probability to "subdivide", which leads to a prior over infinite(ly many) trees. We derive an exact, fast, and simple inference algorithm for such a prior, for the data evidence, the predictive distribution, the effective model dimension, and other quantities.Comment: 8 twocolumn pages, 3 figure

    Fast non-parametric Bayesian inference on infinite trees

    Get PDF
    Given i.i.d. data from an unknown distribution, we consider the problem of predicting future items. An adaptive way to estimate the probability density is to recursively subdivide the domain to an appropriate data-dependent granularity. A Bayesian would assign a data-independent prior probability to "subdivide", which leads to a prior over infinite(ly many) trees. We derive an exact, fast, and simple inference algorithm for such a prior, for the data evidence, the predictive distribution, the effective model dimension, and other quantities
    • …
    corecore