13,178 research outputs found

    Constrained Finite Receding Horizon Linear Quadratic Control

    Get PDF
    Issues of feasibility, stability and performance are considered for a finite horizon formulation of receding horizon control (RHC) for linear systems under mixed linear state and control constraints. It is shown that for a sufficiently long horizon, a receding horizon policy will remain feasible and result in stability, even when no end constraint is imposed. In addition, offline finite horizon calculations can be used to determine not only a stabilizing horizon length, but guaranteed performance bounds for the receding horizon policy. These calculations are demonstrated on two examples

    Predictive pole-placement control with linear models

    Get PDF
    The predictive pole-placement control method introduced in this paper embeds the classical pole-placement state feedback design into a quadratic optimisation-based model-predictive formulation. This provides an alternative to model-predictive controllers which are based on linear–quadratic control. The theoretical properties of the controller in a linear continuous-time setting are presented and a number of illustrative examples are given. These results provide the foundation for novel linear and nonlinear constrained predictive control methods based on continuous-time models

    Concurrent Learning Adaptive Model Predictive Control with Pseudospectral Implementation

    Full text link
    This paper presents a control architecture in which a direct adaptive control technique is used within the model predictive control framework, using the concurrent learning based approach, to compensate for model uncertainties. At each time step, the control sequences and the parameter estimates are both used as the optimization arguments, thereby undermining the need for switching between the learning phase and the control phase, as is the case with hybrid-direct-indirect control architectures. The state derivatives are approximated using pseudospectral methods, which are vastly used for numerical optimal control problems. Theoretical results and numerical simulation examples are used to establish the effectiveness of the architecture.Comment: 21 pages, 13 figure

    Stochastic model predictive control for constrained networked control systems with random time delay

    Get PDF
    In this paper the continuous time stochastic constrained optimal control problem is formulated for the class of networked control systems assuming that time delays follow a discrete-time, finite Markov chain . Polytopic overapproximations of the system's trajectories are employed to produce a polyhedral inner approximation of the non-convex constraint set resulting from imposing the constraints in continuous time. The problem is cast in a Markov jump linear systems (MJLS) framework and a stochastic MPC controller is calculated explicitly, oine, coupling dynamic programming with parametric piecewise quadratic (PWQ) optimization. The calculated control law leads to stochastic stability of the closed loop system, in the mean square sense and respects the state and input constraints in continuous time

    Robust Constrained Model Predictive Control using Linear Matrix Inequalities

    Get PDF
    The primary disadvantage of current design techniques for model predictive control (MPC) is their inability to deal explicitly with plant model uncertainty. In this paper, we present a new approach for robust MPC synthesis which allows explicit incorporation of the description of plant uncertainty in the problem formulation. The uncertainty is expressed both in the time domain and the frequency domain. The goal is to design, at each time step, a state-feedback control law which minimizes a "worst-case" infinite horizon objective function, subject to constraints on the control input and plant output. Using standard techniques, the problem of minimizing an upper bound on the "worst-case" objective function, subject to input and output constraints, is reduced to a convex optimization involving linear matrix inequalities (LMIs). It is shown that the feasible receding horizon state-feedback control design robustly stabilizes the set of uncertain plants under consideration. Several extensions, such as application to systems with time-delays and problems involving constant set-point tracking, trajectory tracking and disturbance rejection, which follow naturally from our formulation, are discussed. The controller design procedure is illustrated with two examples. Finally, conclusions are presented

    Stabilising Model Predictive Control for Discrete-time Fractional-order Systems

    Full text link
    In this paper we propose a model predictive control scheme for constrained fractional-order discrete-time systems. We prove that all constraints are satisfied at all time instants and we prescribe conditions for the origin to be an asymptotically stable equilibrium point of the controlled system. We employ a finite-dimensional approximation of the original infinite-dimensional dynamics for which the approximation error can become arbitrarily small. We use the approximate dynamics to design a tube-based model predictive controller which steers the system state to a neighbourhood of the origin of controlled size. We finally derive stability conditions for the MPC-controlled system which are computationally tractable and account for the infinite dimensional nature of the fractional-order system and the state and input constraints. The proposed control methodology guarantees asymptotic stability of the discrete-time fractional order system, satisfaction of the prescribed constraints and recursive feasibility

    Real-Time Motion Planning of Legged Robots: A Model Predictive Control Approach

    Full text link
    We introduce a real-time, constrained, nonlinear Model Predictive Control for the motion planning of legged robots. The proposed approach uses a constrained optimal control algorithm known as SLQ. We improve the efficiency of this algorithm by introducing a multi-processing scheme for estimating value function in its backward pass. This pass has been often calculated as a single process. This parallel SLQ algorithm can optimize longer time horizons without proportional increase in its computation time. Thus, our MPC algorithm can generate optimized trajectories for the next few phases of the motion within only a few milliseconds. This outperforms the state of the art by at least one order of magnitude. The performance of the approach is validated on a quadruped robot for generating dynamic gaits such as trotting.Comment: 8 page
    corecore